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ABSTRACT

Theory and Applications of Network Structure
of Complex Dynamical Systems

Vasu N. Chetty
Department of Computer Science, BYU

Doctor of Philosophy

One of the most powerful properties of mathematical systems theory is the fact that
interconnecting systems yields composites that are themselves systems. This property allows
for the engineering of complex systems by aggregating simpler systems into intricate patterns.
We call these interconnection patterns the “structure” of the system. Similarly, this property
also enables the understanding of complex systems by decomposing them into simpler parts.
We likewise call the relationship between these parts the “structure” of the system. At first
glance, these may appear to represent identical views of structure of a system. However,
further investigation invites the question: are these two notions of structure of a system the
same?

This dissertation answers this question by developing a theory of dynamical structure.
The work begins be distinguishing notions of structure from their associated mathematical
representations, or models, of a system. Focusing on linear time invariant (LTI) systems,
the key technical contributions begin by extending the definition of the dynamical structure
function to all LTI systems and proving essential invariance properties as well as extending
necessary and su�cient conditions for the reconstruction of the dynamical structure function
from data. Given these extensions, we then develop a framework for analyzing the structures
associated with di↵erent representations of the same system and use this framework to show
that interconnection (or subsystem) structures are not necessarily the same as decomposition
(or signal) structures. We also show necessary and su�cient conditions for the reconstruction
of the interconnection (or subsystem) structure for a class of systems.

In addition to theoretical contributions, this work also makes key contributions to
specific applications. In particular, network reconstruction algorithms are developed that
extend the applicability of existing methods to general LTI systems while improving the
computational complexity. Also, a passive reconstruction method was developed that enables
reconstruction without actively probing the system. Finally, the structural theory developed
here is used to analyze the vulnerability of a system to simultaneous attacks (coordinated or
uncoordinated), enabling a novel approach to the security of cyber-physical-human systems.

Keywords: linear systems theory, dynamical structure function, structured linear fractional
transformations, network semantics, system structure, network reconstruction, subsystem
structure, signal structure, network vulnerability
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Chapter 1

Introduction

“The lustrous, indestructible, incorruptible metal that was the

unbroken surface of the planet was the foundation of the huge, metal

structures that mazed the planet. They were structures connected by

causeways; laced by corridors; cubbyholed by o�ces; basemented by

the huge retail centers that covered square miles; penthoused by the

glittering amusement world that sparkled into life each night.”

– Isaac Asimov, Foundation [11]

Structure is a very versatile concept that simultaneously represents the order and

majesty of the Ei↵el tower as well as the patterned chaos of a Picasso painting, Figure

1.1. Merriam-Webster defines structure as “something arranged in a definite pattern of

organization” [6]. This interpretation of structure certainly applies to physical structures such

as the Ei↵el tower. The iron components of the tower are arranged in a clear, captivating

pattern while still performing the unified function of ensuring the building stays erect.

Similarly, the individual components in an artistic piece like Picasso’s Guernica have a

definitive pattern and organization that represents a story, concept, or idea.

Rearranging or removing components of an artistic work may cause the foundation

of the work to crumble much in the same way that a building would crumble if physical

components were manipulated. These examples demonstrate that structure permeates every

aspect of our existence, from large interplanetary interactions millions of miles away all the

way down to the atomic structure of our cells. Understanding the role of structure is critical

for explaining how the world around us operates and evolves.

1
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(a) The Ei↵el tower in Paris, France [1]. (b) A painting by Pablo Picasso portraying
the bombing of Guernica during the Spanish
Civil War [2].

Figure 1.1: A juxtaposition of engineered structures and artistic structures.

Philosophers and scientists for millennia have attempted to explain observations of

the behavior of physical phenomena. They developed tools such as mathematics and physics

to detail interactions in the world around them, such as the manner in which an object moves

through space or the manner in which a population evolves over time within a particular

ecosystem. The resulting mathematical models demonstrate one way we interpret the world

around us in order to improve our predictions of the future or our understanding of the past.

1.1 Background

This thesis looks at relationships between di↵erent mathematical models and their associated

properties. In order to detail these relationships, we first define some important concepts.

1.1.1 Systems and Their Behaviors

The first concept we detail is the notion of a system. A system is a set of constraints on

the allowed values manifest variables can achieve. Thus, our study of systems begins with

an exploration of manifest variables. A manifest variable is a measured quantity that takes

values from a specified set. So, for example, a tra�c light takes values from the set {red,

yellow, green} while my car’s velocity can be represented by two real numbers–one for its

speed in the “north-south” direction and the other for its “east-west” speed. Mathematically,

we write w
i

, i = 1, 2, ..., n for a collection of n manifest variables, and the set of values each

2
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can take can be represented as W
i

. Thus, in our example, w1 2W1 = {red, yellow, green},

w2 2W2 = R, and w3 2W3 = R. Collecting all our manifest variables together, we have

w =

266664
w1

w2

w3

377775 2 {red, yellow, green}⇥ R⇥ R = W.

A system is then just a set of allowed values of its manifest variables, so if w1 = “red,” then

perhaps w2 and w3 must be zero; it constrains what is admissible from the entire set of

possibilities defined by W.

Dynamic systems have manifest variables that are functions of time. For our example,

the tra�c light w1 may still take its values from the set {red, yellow, green}, but if it’s a

dynamic variable then the value it takes depends on the time t 2 T, where T is the set of

allowed values for time. We consider both discrete time systems, where time is an integer,

t 2 Z, and continuous time systems, where time is a real number t 2 R. In either case, we

write w(t) 2 W and call w a signal and W the signal space. The combination of allowed

signals is called the behavior of a system, denoted B 2W. A dynamic system is defined as a

triple, (T,W,B).

It is important to note that a system is a set (its behavior), not an equation. Since

many equations have the same solution set, we find that many equations (i.e. models or

representations) characterize the same behavior, or system.

1.1.2 Interconnections of Systems

Multiple systems may be interconnected together by variable sharing, i.e. by equating a set

of manifest variables from one system with those from another. Forcing these variables to

take on the same values creates a new, composite system and the original systems become

subsystems of the resulting composite system. The manifest variables of the composite system

are a subset of the variables manifest for the set of its subsystems. This occurs because
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sometimes interconnections between subsystems are internal and not manifest with respect

to the composite system. We call these interconnection variables latent or hidden. Note

that interconnecting systems causes a distinction in what variables are manifest depending

on one’s frame of reference. Consider, for example, two systems given by (T,R2,B1) and

(T,R2,B2). Each system has exactly two manifest variables, each of which can take values

from the reals. If we interconnect these systems by sharing one variable from each subsystem,

one possible composite system would have two manifest variables and e↵ectively one hidden

variable (since the two internal variables are forced to take on the same values due to variable

sharing).

For the composite system, there are multiple notions of behavior: its manifest behavior,

given by the behavior of the two manifest variables, or its complete behavior, specified by the

allowed behavior of all four variables. Black box models are equations that accurately describe

the manifest behavior of the composite system, while a complete mechanistic model of the

system accurately represents the behavior of each subsystem as well as the interconnection

structure of the composite system, thereby capturing the full behavior of all four variables of

the system.

When a system is composed of interconnected subsystems, there are opportunities to

not only describe its manifest behavior or its complete behavior, but also partial structure rep-

resentations that capture intermediate behaviors of the system. For example, interconnecting

two composite systems results in another composite system that itself has a manifest behavior

and a complete behavior, but it also has an intermediate, or partial, frame of reference that

only considers the manifest behavior of each subsystem. Among all such intermediate frames

of reference, the one that retains the highest number of subsystems (i.e. combines the fewest

subsystems into composite subsystems) while using only interconnection variables that are

manifest with respect to the composite system, is called the subsystem frame.
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(a) Consider two systems, denoted by blue
boxes, each with two manifest variables, de-
noted by the orange nodes. The black arrows
detail information sharing, so each manifest
variable shares information publicly, beyond
the scope of the internal dynamics of the
system.

(b) One manner of interconnecting the two
systems together is through variable sharing,
i.e. equating a set of manifest variables in
one system with those from another. We
call the corresponding interconnected system
a composite system, denoted by the large
purple box.

(c) The resulting composite system can be
viewed from the frame of reference that it is a
single system, rather than the interconnection
of two systems.

(d) This perspective of the system means that
the shared variable is no longer manifest, but
latent or hidden. The hidden variable is de-
noted by the red node.

Figure 1.2: The process of interconnecting systems through variable sharing.

1.1.3 System Structures

Given a system, we see that it may have multiple frames of reference, and each frame of

reference may have multiple equations, or mathematical models, describing the associated

behavior. A black-box model, for example, which describes a system’s manifest behavior

can be associated with a graph called its manifest structure by identifying each manifest
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variable with a node and allowing edges between nodes to indicate a dependency between

variables. Similarly, a graph called the complete computational structure can be associated

with the complete behavior of an interconnection of subsystems and a graph of the subsystem

structure can be identified with the associated subsystem frame.

In this work, we also consider a fourth type of structure, which is the causal relationship

among manifest variables without a↵ecting other manifest variables. This structure is called

the signal structure because it defines the structure among manifest signals, and it requires

use of a directed graph to capture the inherent notion of causality built into its definition.

1.1.4 Distinctions Between Partial Structure Representations

The signal structure and subsystem structure are both partial structure representations of

systems and, thus, have been often confused to be the same representation of a system

in the literature. In order to understand the di↵erence between the two partial structure

representations, consider a personal computer system, as in Figure 1.3a, which is made up of

components such as the central processing unit, the graphics processing unit, memory, power

supply, etc. Each component is distinct in that each one can be easily replaced with other,

similar, compatible components without drastically changing the functionality of the overall

system. Structure in this sense could be detailed mathematically using a representation like

the subsystem structure. The subsystem structure, like engineered systems, are agglomerative,

meaning that they both use smaller, modular components to build a larger overall system.

Some other types of systems, such as more fluidic systems (e.g. chemical processes in

cells), may not have as clear a notion of subsystems as engineered systems. This means that

they cannot be easily described using a representation like the subsystem structure. Consider

a biochemical reaction network consisting of interacting proteins, as in Figure 1.3b. The

interactions between the proteins are more di�cult to describe than the interactions of an

engineered system. This could be for a variety of reasons, including the fact that components

may not be easily replaceable, as they are in an engineered system. Also, the manner in
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which the components interact may not always be directly visible, as opposed to something

like cables connecting components in a PC. In fact, connections between components in a

fluidic system often must be learned through observation or experimentation. These kinds of

structure could potentially be detailed mathematically using a representation like the signal

structure.

Unlike the subsystem structure, the signal structure is deconstructive rather than

agglomerative. The signal structure is a representation that can be learned from breaking

down structure from an external perspective as opposed to constructing a system from a

modular set of components.

(a) A side view of a personal computer
system including a motherboard, graphics
card, and power supply connected by phys-
ical wires [3].

(b) A three-dimensional X-ray crystal struc-
ture of two interacting proteins used to al-
low yeast cells to adapt to environmental
stress [4].

Figure 1.3: Di↵erent types of systems need to be modeled with di↵erent notions of structure.

1.1.5 Why Does System Structure Matter?

There are many situations where a particular structure of a system directly impacts its

dynamic behavior, and thus the need, for example, of a specific shape in a ship’s hull, or a

design of a complex freeway interchange, is well understood. In these cases we simply choose

a structure that yields a system with the desired behavior.

Nevertheless, what about situations where very di↵erent structural choices yield

exactly the same behavior, such as is frequently the case with software, electronics, and a

variety of other systems? In these cases, is one structural choice preferred over others? What
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criteria should one use to evaluate di↵erent structural options when the system dynamics are

otherwise equivalent? Consider the following:

• Implementation Cost. The fact that a given manifest structure has many complete

computational structures, some of which may be much more sparse than others, illus-

trates the important idea that the same manifest behavior of a system can often be

realized from implementations with significantly di↵erent numbers of internal compo-

nents. In situations where the number of components is proportional to the cost of

the implementation, as is the case for many physical systems, implementation cost

then becomes an important reason for understanding the structural choices available to

realize a specific dynamic design.

• Understandability. Internal structure of a system can be important to help one

understand (or hinder an outsider from understanding) how the system works. Hierarchy

and modularity of subsystems are examples of methods for organizing designs so that

complex systems can be more easily understood. This understandability can have a

major impact on other aspects of system management, such as making the system

easier to:

– visualize,

– promote situational awareness,

– verify,

– diagnose for component failure,

– facilitate targeted access to system components, and

– maintain.

On the other hand, making structural choices that reduce the understandability of a

system can help to secure the system from various types of infiltration, including:

– espionage, or

8



www.manaraa.com

– sabotage.

1.1.6 Linear Time Invariant System Representations

This thesis focuses on structures for linear time invariant system representations. For each of

the four graphical structures, the associated mathematical models of linear time invariant

systems are as follows:

1. The complete mechanistic model is detailed by the state space model, denoted by the

matrices (A,B,C,D), (Section 2.1),

2. The black box model, or manifest structure, is detailed by the transfer function, denoted

by the matrix of rational polynomials G(s) where s is the Laplace variable, (Section

2.2),

3. The subsystem structure is detailed by the structured linear fractional transformation,

denoted by the transfer function matrices (Q(s), P (s)), (Section 2.3),

4. The signal structure is detailed by the dynamical structure function, denoted by the

boolean matrix N and block diagonal transfer function matrix S(s), (Section 2.4).

1.2 Contributions

We now detail the specific contributions of this thesis, splitting them into two parts: theoretical

contributions and advances in applications.

1.2.1 Theory

The theoretical contributions of this work are as follows:

1. Extending the definition of the dynamical structure function to general

linear time-invariant (LTI) systems, (Section 2.4). The original definition of the

dynamical structure function applied only to systems with (partial) state measurement

[24]. In this work we extend the definition of the dynamical structure function to
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general LTI systems, which involved a nontrivial proof of Theorem 2 ensuring that our

extension is well-defined (Chapter 2). We also prove that this extended definition has

several important properties, including:

(a) Invariance to block diagonal state transformations partitioned commensurate with

the hidden states of the system (Chapter 2, Lemma 1),

(b) Invariance to permutations of the states (Chapter 2, Theorem 3).

2. Generalizing necessary and su�cient conditions for identifiability of the

dynamical structure function to any linear time invariant system, (Section

3.3). The dynamical structure function is a system representation with higher structural

informativity than a black box model and easier to learn from data than the complete

computational structure of a system. It is represented by a pair, (Q(s), P (s)), of

matrices of rational functions of a complex variable, and it was originally developed for

the purpose of network inference [24]. The original necessary and su�cient informativity

conditions for learning Q(s) and P (s) from data were developed for the case when P (s)

was diagonal. Here we generalize the conditions to any linear time invariant system.

(a) In particular, we show that systems with non-diagonal P (s) can be reconstructed,

and we demonstrate the utility of this result on the reconstruction of a particular

biochemical reaction network, (Section 3.4).

(b) We also show that there exist systems that cannot have diagonal P (s), so our

extension is not merely a curiosity, but it is absolutely essential for some systems,

(Appendix 3.6).

(c) Finally, we demonstrate catastrophic sensitivity of our informativity conditions;

being wrong about just one element (i.e. thinking P (s) is diagonal when it is

almost diagonal with only one non-zero o↵-diagonal element) results in arbitrarily

bad reconstruction results, (Section 6.5.1).
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3. Developing a methodology for comparing the meaning of structures associ-

ated with di↵erent system representations and using this method to show

that signal and subsystem structure can be distinct, (Sections 4.1.1 and 5.2).

Although previous work began to explore the relationships between these notions of

structure [71], often they are confused in the literature. Signal structure, which is used

in identification and inference algorithms, is often interpreted as the interconnection of

subsystems, which is used in distributed design and multi-agent systems. Nevertheless,

here we detail a precise methodology for distinguishing these concepts and reasoning

about their semantics.

4. Developing necessary and su�cient conditions for the identifiability of the

subsystem structure of a class of interconnected subsystems and showing

that it is always as hard or harder than reconstruction of the associated

dynamical structure function, (Section 5.3). The reason that reconstruction of the

subsystem structure is harder is because it identifies a partition of the state variables

(i.e. which states belong in which subsystems), while reconstruction of the signal

structure remains agnostic to the presence of shared hidden state among modules

in the network. This fact precisely explains the gap between network identification

procedures, that identify signal structure, and decentralized control procedures, that

consider interconnections of subsystems.

1.2.2 Applications

The advances in applications in this work are as follows:

1. Adapting the existing polynomial reconstruction procedure to the non-

diagonal P (s) case and extending the results to improve computational

complexity (from a higher order polynomial to a lower order polynomial),

(Section 6.3). Reconstruction algorithms that estimate a system’s signal structure from

noisy data tend to favor highly connected structures, since more connections means more
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degrees of freedom to better fit the data. As a result, one typically adds a regularization

term to the objective function to penalize structures that use more connections simply

to fit the noise [73]. Previous work used Akaike’s information criterion to penalize

overfitting and developed a polynomial search algorithm that could solve the problem

[28]. The work here extends this approach to general structures, even when P (s) is not

diagonal, and reduces the search complexity.

2. Developing an approach to passive reconstruction of the dynamical struc-

ture function, (Chapter 7). Algorithms that reconstruct the dynamical structure

function from data typically ensure su�cient informativity of the data by following

a particular experimental procedure: to perturb each input channel with a step and

observe all subsequent output channels until they reach steady state. In some applica-

tions, however, one does not have the ability to control the system inputs. As a result,

passive reconstruction techniques are needed that simply observe the manifest signals

until they are su�ciently informative to reveal the dynamical structure function and

associated signal structure. To accomplish this, our work here:

(a) Developed a time-domain representation of the DSF (Section 7.3)

(b) Created a new time-domain reconstruction algorithm that observes measured

signals and then reconstructs when they become informative enough to specify

the network structure, (Section 7.2)

(c) Detailed passive reconstruction for situations where the inputs are unmeasured

e.g. stochastic inputs (Appendix 7.6)

3. Using the partial structure modeling technology of the dynamical structure

function to represent attack surfaces in complex systems and extending

previous vulnerability results to situations where attackers can execute co-

ordinated attacks against the system, (Section 8.4). Other applications of the

structural theory developed here, besides network inference, include vulnerability anal-
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yses of a system. Previous work used the dynamical structure function and associated

signal structure to characterize the attack surface of cyber-physical-human systems [45].

These models can then be analyzed to understand the size of di↵erent perturbations

required to cause instability, leading to an e↵ective denial of service attack. Our work

here considers the case of coordinated attacks and demonstrates that the vulnerability

calculation can e↵ectively distinguish secure and insecure structures. Subsequent work

illustrated the approach on a specific cyber-physical-human regional water management

system in central Utah [25].

1.3 A Note on Related Work

Since each chapter has its own related works section, one is not provided here.
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Part I

Theory: Chapters 2 - 5
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Chapter 2

System Representations and the Extended Definition of the Dynamical

Structure Function

(To be published in the book “Principles of Cyber-Physical Systems” as a chapter

entitled “Meanings and Applications of Structure in Networks of Dynamic Systems”)

This chapter describes four di↵erent mathematical representations of systems and

discusses the definition and meaning of the corresponding structure for each: the generalized

state space model with its complete computational structure, the transfer function and

the input-output sparsity structure, structured linear fractional transformations and the

subsystem structure, and the dynamical structure function with its signal structure. Each of

these system representations completely characterize the dynamic behavior of a system, and

thus they are equivalent from a behavioral perspective. Nevertheless, they retain varying

degrees of structural information, and thus these system representations can be ordered based

on their structural informativity.

In this work, a “structure” is a directed graph. We will see that di↵erent system

representations specify di↵erent structural graphs, and each structural graph carries with

it a unique interpretation, or meaning. We will restrict our attention to finite-dimensional,

causal, deterministic linear time invariant (LTI) systems defined over continuous time, but

the concepts extend naturally to the nonlinear and stochastic settings with di↵erent types of

independent variables.
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2.1 State Space Models and the Complete Computational Structure

State space models are the most structurally informative system representation considered

here. The standard state space model for LTI systems is given by:

ẋ = Ax+Bu

y = Cx+Du,
(2.1)

where x(t) 2 Rn represents a vector of n system state variables, each defined over t 2 R;

ẋ(t) 2 Rn represents the time derivative of these state variables; u(t) 2 Rm are controlled

inputs into the system; and y(t) 2 Rp are measured outputs. Recall that states have a

particular meaning, being the information necessary to characterize the future evolution of

the system. That is to say, given the values of x at some time (which will be labeled t = 0

without loss of generality), only future values of the input, u(t) for t � 0, are needed to

completely specify the evolution of the system for all times t � 0. This representation is

su�ciently detailed to completely characterize both the transfer function and the dynamical

structure function of a system, with their corresponding structures.

Nevertheless, this standard state space model does not di↵erentiate between systems

with di↵erent subsystem structures. For example, consider two systems in feedback. One

can easily compute the closed-loop dynamics of such an interconnection and represent them

with a single standard state space model. Nevertheless, if presented with this closed-loop

model, one can not determine what the two subsystems are that generate it. This failure to

distinguish di↵erent subsystem structures comes from the standard state space model’s lack

of representation power to distinguish between the composition of functions (see Example 1).

To distinguish di↵erent subsystem structures, we need to di↵erentiate between

behaviorally equivalent computations such as 1) f(x) = x, 2) f(x) = 2(0.5x) and 3)

f(x) = 0.3x+ 0.7x. We accomplish this by introducing auxiliary variables, w, that represent

intermediate stages of computation. In this way we can di↵erentiate 1) f(x) = x from 2)
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f(x) = 2w and w = 0.5x or 3) f(x) = w1 + w2 and w1 = 0.3x and w2 = 0.7x, since each

of these di↵erent ways of computing the same functional relationship involve zero, one, or

two auxiliary variables, respectively. The auxiliary variables that are specified, say, in a

system’s “blueprint” or manifest directly to observers, help us distinguish the system’s actual

computational structure from others we could imagine.

Introducing auxiliary variables into the standard state space model characterizes

a di↵erential-algebraic system of equations capable of uniquely specifying all three of the

other system representations discussed here. We call this modified system of equations the

generalized state space model of a system, and represent it as

ẋ = Ax+ Âw +Bu

w = Āx+ Ãw + B̄u

y = Cx+ C̄w +Du

(2.2)

where w 2 Rl, Â 2 Rn⇥l, Ā 2 Rl⇥n, Ã 2 Rl⇥l, B̄ 2 Rl⇥m, and C̄ 2 Rp⇥l. The number of

auxiliary variables, l, is called the intricacy of the generalized state space model. Choosing

Ã so that I � Ã is invertible yields a di↵erentiability index of zero. This ensures that the

auxiliary variables can always be algebraically eliminated from the system, producing a

dynamically equivalent standard state space model (2.1). We call this equivalent standard

state space model the zero-intricacy realization or representation of a given generalized state

space model (2.2).

Example 1. Consider the feedback interconnection of two systems, given by

ẋ1 = A1x1 +B1r1 ẋ2 = A2x2 +B2r2

y1 = C1x1 y2 = C2x2

with r1 = u1 + y2 and r2 = u2 + y1, where u1 and u2 are exogenous inputs to the closed-loop

system, and y1 and y2 are measured outputs from the closed-loop system. Defining w1 = y1 and
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w2 = y2, we obtain the following generalized state space model of the feedback interconnection:

264 ẋ1

ẋ2

375 =

264 A1 0

0 A2

375
264 x1

x2

375 +

264 0 B1

B2 0

375
264 w1

w2

375 +

264 B1 0

0 B2

375
264 u1

u2

375
264 w1

w2

375 =

264 C1 0

0 C2

375
264 x1

x2

375 +

264 0 0

0 0

375
264 w1

w2

375 +

264 0 0

0 0

375
264 u1

u2

375
264 y1

y2

375 =

264 0 0

0 0

375
264 x1

x2

375 +

264 1 0

0 1

375
264 w1

w2

375 +

264 0 0

0 0

375
264 u1

u2

375
(2.3)

Note that I � Ã is invertible, thus enabling us to easily eliminate w from the equations. Doing

so yields the zero-intricacy representation of the feedback interconnection:

264 ẋ1

ẋ2

375 =

264 A1 B1C2

B2C1 A2

375
264 x1

x2

375+

264 B1 0

0 B2

375
264 u1

u2

375
264 y1

y2

375 =

264 C1 0

0 C2

375
264 x1

x2

375
(2.4)

Although these representations are dynamically equivalent, meaning that (2.3) and (2.4)

generate identical state and output trajectories if they are given the same initial condition x
o

and input trajectory u(t), (2.3) encodes information to uniquely specify the original subsystems

and their feedback interconnection structure, while (2.4) does not.

Example 1 illustrates a generalized state space model and the corresponding zero-

intricacy realization of a system composed of the interconnection of multiple subsystems.

In fact, whenever I � Ã is invertible, every generalized state space model has a unique,
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well-defined zero-intricacy realization. Likewise, every zero-intricacy state space model is

dynamically equivalent to a rich variety of generalized state space models of any positive

intricacy; these generalized state space models di↵er only in how their computations are

performed, or in their underlying computational structure. We call this structure of the most

refined generalized state space description of a system, even zero-intricacy ones, the complete

computational structure, and all other notions of system structure discussed in this work can

be derived directly from it.

Definition 1 (Complete Computational Structure). Given a generalized state space model,

as in (2.2), its complete computational structure is a weighted directed graph C with vertex

set V (C ) and edge set E(C ) given by:

• V (C ) = {u1, ..., um

, x1, ..., xn

, w1, ..., wl

, y1, ..., yp}, and

• E(C ) is specified by the nonzero entries of the adjacency matrix A (C ), where

A (C ) =

266666664

0 0 0 0

B A Â 0

B̄ Ā Ã 0

D C C̄ 0

377777775

T

. (2.5)

That is to say, a potential edge from v
i

2 V (C ) to v
j

2 V (C ) has weight A (C )
ij

, but

we only recognize the existence of edges with non-zero weight.

The generalized state space model (2.2) encodes information about how the system

performs the computations necessary to realize its dynamic behavior. It is like an information

blueprint of how specific components are interconnected to access information from input

signals; how this information is represented (in a specific coordinate system) and combined

with other data retrieved from memory; how these new calculations are stored; and how all of

this data combines to produce measurable output signals. The meaning, then, of the complete

computational structure characterized by (2.5), is the information architecture of a very
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specific computation system: how information is represented, transformed, and flows through

the system. Note that there is a distinction between “physical structure” and state space

models; in some cases, the particular basis specified by a state space model is more detailed

than the physical structure may suggest. For example, consider an inertial mass. This mass

behaves like a second order system according to Newton’s Second Law of Motion, but it is

not clear whether states of the system are necessarily position and velocity, or whether they

are some linear combinations of position and velocity. Exactly how some systems represent

and store information may be unclear, but if it were known, state space models are capable

of representing this refined level of structural knowledge. These models (the generalized state

space model and its associated complete computational structure) then become the most

refined knowledge of our system, ground truth from which all other representations can be

compared.

Note that because intricacy variables can always be eliminated from a generalized state

description without changing its dynamics, the most refined generalized state space model,

with intricacy l > 0, immediately defines a particular sequence of state space models indexed

by their intricacies, l� 1, ..., 0. Each of these coarser models has a structure associated with it

that we call a computational structure, but we reserve the descriptor, complete computational

structure for the most refined structural specification of the system; once the complete

computational structure is specified, even if it has zero-intricacy, all other hypothetical

refinements are considered fictitious while any agglomerative structure derived from it is a

valid notion of structure for the system.
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Example 2. Making Example 1 concrete, consider the following two systems:

264ẋ1

ẋ2

375 =

264�1 2

0 �2

375
264x1

x2

375+

264 2 �1

�1 1

375
264r1
r2

375
266664
ẋ3

ẋ4

ẋ5

377775 =

266664
�5 �4 2

3 2 �1

0 0 �3

377775
266664
x3

x4

x5

377775+

266664
0 �1

0 1

1 0

377775
264r3
r4

375
264y1
y2

375 =

2641 2

1 1

375
264x1

x2

375 ,

264y3
y4

375 =

2641 2 0

1 1 0

375
266664
x3

x4

x5

377775 ,

interconnected in feedback, so that

264r1
r2

375 =

264y3
y4

375+

264u1

u2

375 ,

264r3
r4

375 =

264y1
y2

375+

264u3

u4

375 ,

leading to the following generalized state space model:2666666666664
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ẋ2

ẋ3
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266666664
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377777775
. (2.6)

The complete computational structure of this system, given in (2.6), is shown in Figure 2.1.
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Figure 2.1: Complete computational structure of the generalized state space model from
(2.6). Blue nodes are manifest variables, while purple nodes indicate hidden variables. Notice
that the original feedback structure of subsystems, reflected by gray boxes, is preserved, since
the only interaction between subsystems is through manifest variables.
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The zero-intricacy realization of this generalized state space model, (2.6), is then given

by:

266666666664
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=

266666664

1 2 0 0 0

1 1 0 0 0

0 0 1 2 0

0 0 1 1 0

377777775
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+
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0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

377777775

266666664

u1

u2

u3

u4

377777775

(2.7)

The computational structure of the zero-intricacy realization, given in (2.7), is shown in

Figure 2.2. Notice the di↵erences with the complete computational structure shown in Figure

2.1. For example, the complete computational structure has nodes for auxiliary variables, w,

while the computational structure of the zero-intricacy realization does not. Also, original

subsystem structure is preserved in the complete computational structure, highlighted by the

background gray boxes, while it is lost in the computational structure of the zero-intricacy

realization, resulting in no distinguishable subsystems.

2.2 Functional System Descriptions and the Manifest Structure

While state space models are the most structurally informative system representations,

functional system descriptions, such as convolution models or transfer functions, are at the

other end of the spectrum. These “black box” representations of a system are capable of

describing the same dynamic behavior as their state space counterparts, yet they do not
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Figure 2.2: Computational structure of the zero-intricacy realization (2.7) of the generalized
state space model in (2.6). Like Figure 2.1, blue nodes indicate manifest variables while
purple nodes are hidden variables. Notice that the original subsystem structure is lost, and
only a single subsystem remains visible from manifest variables.

model the detailed interactions among system components the way state space representations

do1.

This inability to convey detailed structural information is not necessarily a weakness,

however. For example, functional representations need fewer parameters to characterize a

given dynamic behavior, making them easier to learn from data (called system identification

[31, 57]) than their state space counterparts. Moreover, their parsimonious description of a

system’s dynamics creates an important distinction between a system’s behavior and how

it realizes that behavior, enabling a concerted focus on the design of a system’s dynamics

without worrying about implementation.

Just as high-level programming languages abstract many of the details of the computer

they run on, functional system descriptions are high-level abstractions of state space models.

1Although transfer functions and convolution models of LTI systems assume zero initial conditions, the
impact of a non-zero initial condition is easily modeled with the addition of an appropriately designed external
disturbance.
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In particular, the specific processes a state realization uses to decide which information

is stored in which parts of the state vector correspond to memory management activities

that are completely invisible to a functional description of a system. This distinction is

further exemplified by noting that state space models are imperative descriptions of a system,

encoding computations in terms of the time evolution of the system state, while functional

descriptions are inherently declarative, specifying what the system does without prescribing

how it should do it.

The result of this high-level/low-level relationship between functional system descrip-

tions and state space models is a one-to-many relationship between the two model classes.

That is, every state space model has a zero-intricacy realization as in Equation (2.1) that

identifies a unique functional system description, whether it be the impulse response matrix

of a convolution model or a transfer function matrix, given by:

y(t) = h(t) ⇤ u(t) Y (s) = H(s)U(s)

h(t) = CeAtB +D�(t), H(s) = C(SI � A)�1B +D,
(2.8)

where ⇤ denotes convolution, �(t) is the Dirac delta function, h(t) is the system’s p ⇥ m

impulse response matrix, Y (s) and U(s) are the Laplace transforms of y(t) and u(t), and

H(s) is the system’s p⇥m transfer function matrix–which is also the Laplace transform of

h(t).

Note, however, that there are many state space models that specify the same impulse

response or transfer function; each of these state space models specifies a di↵erent implemen-

tation (or realization) of the same dynamic behavior. Among all these state realizations of a

given functional description of a system, some have fewer states than others. In fact, systems

with functional descriptions that can be described by finite-dimensional LTI state space

models2 have a unique integer, n, associated with them called the Smith-McMillan degree.

2Although all LTI state space models have transfer functions, not all transfer functions have state space
realizations. This is because the imperative nature of state space models demand that they are causal,
meaning that future values of manifest variables only depend on past and present values of manifest variables.
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This degree is the minimal number of states necessary for any state space realization of the

system. Nevertheless, even restricting attention to state space models with order equal to the

Smith-McMillan degree does not yield a unique state realization; given a minimal realization

(A,B,C,D) of a transfer function H(s), any n⇥n transformation, T , yields another minimal

realization (Â, B̂, Ĉ, D̂) given by:

Â = TAT�1, B̂ = TB, Ĉ = CT�1, D̂ = D (2.9)

such that C(sI � A)�1B + D = H(s) = Ĉ(sI � Â)�1B̂ + D̂. Thus, even among minimal

realizations, there are infinitely many implementations of a given dynamic behavior specified

by a functional description such as H(s), and these implementations di↵er only in their

structural properties.

The functional description of a system, however, retains only the structural properties

that are common among all of its state realizations, which is precisely the mathematical

structure of the functional description itself. This structure describes the internal closed-loop

relationships among manifest variables, and therefore is called the manifest structure.

Definition 2 (Manifest Structure). Given a generalized state space model, as in (2.2),

identified by a functional system description, as in (2.8), its manifest structure is a weighted

directed graph M with vertex set V (M ) and edge set E(M ) given by:

• V (M ) = {u1, ..., um

, y1, ..., yp}, each representing a manifest signal of the system, and

• E(M ) has an edge from u
i

to y
j

, labeled by either H
ji

or h
ji

, provided they are non-zero.

Note that when a system’s manifest variables partition naturally into inputs and outputs,

then its manifest structure is a bipartite graph, with directed edges from inputs to outputs.

An alternative definition of the manifest structure characterizes M directly from C

using only graphical properties (which is useful when extending these results to the nonlinear

Transfer functions that are proper rational functions of the Laplace variable correspond to causal finite
dimensional LTI systems; we do not concern ourselves with other kinds in this work.
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setting). In that case, we say M has an edge from u
i

to y
j

if the net impact of all paths in

C from u
i

to y
j

is non-zero, or, equivalently, if every equivalent realization of the system,

specified by a transformation T as in (2.9), with complete computational structure C
T

, has a

path from u
i

to y
j

.

Example 3. Consider the zero-intricacy state space model in (2.7) from Example 2. The

corresponding transfer function is given by:

H(s) = C(sI � A)�1B +D =

266666664

0 s

2+5s+6
s

3+6s2+11s+5
1

s
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s+1
s

2+3s+1
s

3+6s2+11s+8
s

5+9s4+30s3+44s2+26s+5
3s+3

s

5+9s4+30s3+44s2+26s+5
1

s

2+3s+1

1
s

2+3s+1
s

2+7s+10
s

5+9s4+30s3+44s2+26s+5
2s2+6s+5

s

5+9s4+30s3+44s2+26s+5
s+2

s

2+3s+1

0 1
s

3+6s2+11s+5
s+1

s

3+6s2+11s+5 0

377777775
(2.10)

The manifest structure corresponding to this transfer function, (2.10), that represents the

internal closed-loop pathways from inputs to outputs of the system in (2.2) is given in Figure

2.3.

Note that in some cases, although a pathway exists from an input to an output in

the system’s complete computational structure, it is possible that the corresponding transfer

function from the input to the output is zero. For example, notice that although paths exist

from every input to every output in the computational structure of the zero-intricacy realization

generating H (Figure 2.2), H11, H41, H14, and H44 are nevertheless all zero. Thus, we see

that the existence of paths from u
i

to y
j

is not su�cient for H
ij

to be nonzero; the closed-loop,

net e↵ect of all paths from u
i

to y
j

must be nonzero for H
ij

to be nonzero; exact cancellations,

which can be common in software and other engineered systems, can generate zeros in the

functional description.
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(a) Manifest structure of the system with
transfer function (2.10)

u2 

y1 

y2 

u3 y3 

y4 

u1 

u4 

(b) Missing edges in the manifest structure,
corresponding to zero elements in H.

Figure 2.3: Manifest structure of the same system from Figures 2.1 and 2.2. Notice the lack
of edges from u1 to y1 and y4, and from u4 to y1 and y4, corresponding to associated zeros in
H(s). These missing links are highlighted in Figure 2.3b. Note that these links are missing
in the manifest structure even though paths exist in Figure 2.2 from every input to every
output.

2.3 Structured Linear Fractional Transformations and the Subsystem Structure

Having identified the complete computational structure as the most informative structural

representation, and the manifest structure as the least, we now explore the most common

intermediate structural representation: the interconnection of subsystems. Subsystem struc-

ture is less informative than the complete computational structure because it does not reveal

the internal structure of subsystems. On the other hand, subsystem structure can be more

informative than manifest structure because it reveals the interconnection pattern among

subsystems.

To isolate and represent the interconnection pattern of subsystems for a given system,

begin by considering a set of q subsystems, S = { S1 S2 ... S
q

}, interconnected into a

composite system, H. It is conceivable that each of these subsystems are themselves divisible

into constituent subsystems, or that not all of the q subsystems are discernible from H’s

manifest variables, so we specify the level of modeling abstraction by:

28



www.manaraa.com

1. Modeling each of the q constituent subsystems with a suitable functional description,

such as a proper or strictly proper transfer function S
i

(s), i = 1, 2, ..., q, or a single-

subsystem state space realization, characterized as a generalized state space model with

subsystem structure consisting of a single subsystem, so that no further division of the

subsystems is possible, and

2. Ensuring that each of the subsystem’s outputs, w
i

, is a measured output of the composite

system H, so y = [ wT

1 wT

2 ... wT

q

]T , where y is the output of H.

Note that each subsystem is distinct, meaning that state variables internal to one subsystem

are di↵erent from those of the other subsystems, yielding no mechanism for interaction except

through their respective manifest variables. Let u be a vector of external inputs; v
i

and w
i

be the vectors of inputs and outputs for system S
i

; and v and w be the stacked inputs and

outputs from all systems, v = [ vT1 vT2 ... vT
q

]T and w = [ wT

1 wT

2 ... wT

q

]T , so that

w = y. Interconnecting these systems then means defining binary matrices L and K such

that: 
L K

�264 u

w

375 = v. (2.11)

Our convention is that the process of interconnection only allows the selection of

particular signals and possibly adding them together, thus restricting the interconnection

matrices, L and K, to have elements with values of either zero or one; all other computations

are part of the systems in S. Further, we assume that the resulting interconnection is

well-posed, meaning that all signals within H are uniquely specified for any value of external

inputs and underlying state variables [75]. This assumption ensures that the proposed

interconnection is physically sensible and not merely a mathematical artifact.
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The composite system, H, is then clearly defined by the structured linear fractional

transformation (LFT) as in Figure 2.4, given by:

N

264 u

w

375 =

264 y

v

375 ,

w = Sv,

(2.12)

where

N =

264 0 I

L K

375 , S =

266666664

S1 0 ... 0

0 S2 0

...
. . .

...

0 ... S
q

377777775
(2.13)

and S
i

can be represented by either a suitable functional description, such as a proper

or strictly proper transfer function matrix or the associated impulse response matrix of a

convolution model, or by any single-subsystem generalized state realization. The symbol

S is overloaded, representing both the set of subsystems and the decoupled operator of

subsystem models in (2.13), but the appropriate meaning should always be clear from

context. Equations (2.12) and (2.13) characterize H as a structured LFT in terms of S.

Combining these equations yields, for example, Y (s) = [S(s)(I �KS(s))�1L]U(s), implying

that H(s) = S(s)(I �KS(s))�1L, where Y (s) and U(s) are the Laplace transforms of y(t)

and u(t), respectively; similarly, a well-specified expression can be obtained for h directly in

the time domain. The functional description of the composite system, H, in either the time

or frequency domain, is completely specified by the structured LFT description in (2.12) and

(2.13).

Although the structured LFT completely specifies the functional description of the

composite system, H, the structured LFT does not have enough structural information

to specify H’s complete computational structure or its associated generalized state space

description. To do so, it would need information about the “true” structure of each constituent
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Figure 2.4: A structured linear fractional transformation revealing the interconnection
structure among subsystems in binary matrices L and K.

subsystem. This point may be clear when S is specified by a functional description for each

subsystem, such as its transfer function, but it becomes more subtle when S is specified

by a generalized state space model for each subsystem. In this case, it is important to

understand that the state space model for each subsystem in S can be any single-subsystem

realization of the associated transfer function, S
i

(s), since the structured LFT does not

use any information about the internal structure of its subsystems. To realize the “true”

generalized state description of H an its associated complete computational structure, one

must have accurate descriptions of the complete computational structures for each constituent

subsystem to complement the “interconnection” information in the structured LFT.

The structured LFT reveals the interconnection structure among subsystems, encoded

in the binary interconnection matrix, N , in general, and in L and K in particular. Note

that the interconnection structure in N is una↵ected by whether the subsystems in S

are represented by state space models or transfer functions. The internal computational

structure of subsystems, revealed by state models of subsystems but not transfer function

representations of subsystems, is not used when representing the subsystem structure of
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a system–only the interconnection structure among subsystems, not within subsystems, is

relevant for this representation.

Aggregating L and K appropriately to account for the potentially multi-input multi-

output nature of the constituent subsystems yields adjacency matrices from which the

composite system’s subsystem structure can be built. To accomplish this, let e
v

i

denote the

vector of ones with length equal to the length of vector v
i

. We then define the aggregation

matrices

A
v

=

266666664

eT
v1

0 ... 0

0 eT
v2

0

...
. . .

...

0 0 ... eT
v

q

377777775
, A

w

=

266666664

eT
w1

0 ... 0

0 eT
w2

0

...
. . .

...

0 0 ... eT
w

q

377777775
, (2.14)

and use them to create the adjacency matrices:

A (L) = sgn(A
v

L)T , A (K) = sgn(A
v

KAT

w

)T , (2.15)

where sgn(·) denotes the sign function, yielding a value of one for positive entries, zero for

zero, and negative one for negative entries (which can never occur in this case). With these

definitions, we are now prepared to characterize a system’s subsystem structure:

Definition 3 (Subsystem Structure). Given a generalized state space model, as in (2.2),

identified by a structured LFT, (N,S), as in (2.12) and (2.13) and with associated aggregation

matrices as in (2.14) and adjacency matrices as in (2.15) , its subsystem structure is a

weighted directed graph S with vertex set V (S ) and edge set E(S ) given by:

• V (S ) = {u1, ..., um

, S1, ..., Sq

, y1, ..., yp}, representing input signals, subsystems, and

output signals, respectively.

• E(S ) has an edge from

– u
i

to S
j

if A (L)
ij

= 1, labeled u
i

;

32



www.manaraa.com

– S
i

to S
j

if A (K)
ij

= 1, labeled w
i

;

– S
i

to y
j

if (A
w

)
ij

= 1, labeled y
j

.

Note that the subsystem structure is qualitatively di↵erent from either the complete

computational structure or the manifest structure in a few ways. First, while all the nodes of

either the complete computational structure or the manifest structure represent signals, the

nodes of the subsystem structure represent systems, namely the subsystems and exosystems

associated with the generation of each input or measurement of each output signal. As a

result, we often denote the nodes in the subsystem structure with a di↵erent shape, e.g.

rectangles instead of circles, to highlight this distinction (see Figure 2.5e). Also, the edges in

both the complete computational structure and the manifest structure are labeled to represent

systems, while the edges in the subsystem structure are labeled with the names of signals.

These distinctions make it clear that the subsystem structure carries the interpretation of a

block diagram, while the other structures are signal flow graphs.

The definition of subsystem structure given above characterizes the graph in terms N

and S. Nevertheless, the subsystem structure can be obtained directly from the complete

computational structure, which not only lends a graphical interpretation to the concept of

a subsystem, but naturally facilitates the extension of the definitions to the nonlinear and

stochastic setting. We achieve this by first extending the definition of a manifest node or

manifest signal of C to include any node representing a signal identically equal to a manifest

signal, u
i

or y
j

. We then consider the subgraph of C obtained by 1) removing all input nodes

and any outgoing edges leaving them, 2) removing all output nodes and any incoming edges

entering them, and 3) removing all outgoing edges leaving any remaining manifest nodes.

This subgraph, H is the hidden structure of C , and it immediately reveals its subsystems

and their interconnection, as follows:

Theorem 1. Consider a system H characterized by a structured LFT, (N,S). Construct

a complete computational structure for H, as in (2.2), by realizing each subsystem in S
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with a single-subsystem state space model, and let C be the resulting complete computational

structure. Then every connected component of H , the hidden structure of C , corresponds to

a distinct subsystem in S.

Proof. Since each subsystem is realized by a single-subsystem state space realization, variables

internal to each subsystem correspond to nodes of C that are connected to each other.

Moreover, since all outputs of S are manifest, and S is diagonal, these connected components

can only be interconnected by manifest signals. By removing all outgoing edges from internal

manifest nodes in C , as well as removing all input and output nodes and their associated

edges, H isolates each subsystem so the remaining connected components of H correspond

to the subsystems in S.

The next example illustrates this procedure of obtaining a system’s subsystem structure

directly from its complete computational structure.

Example 4. Consider the generalized state space model of two subsystems in feedback from

Example 2, given by Equation (2.6). Figures 2.1 and 2.5a illustrate the system’s complete

computational structure, C , and we can generate its subsystem structure by identifying the

connected components in the hidden structure of C , as demonstrated in Figure 2.5:

The process of constructing a system’s subsystem structure from its complete computa-

tional structure involves 1) identifying all manifest nodes in C , 2) removing all input and

output nodes and their adjacent edges, 3) removing all outgoing edges from any remaining

manifest nodes. These three steps construct the hidden structure, H , and each connected

component in H corresponds to a subsystem. Compress these connected components into

single subsystem nodes and replace the input and output nodes as exosystems (instead of

signals). Replace all removed edges following the convention that if a node in C is no longer

in S , connect the edge to the corresponding subsystem node. This may lead to multiple edges

between nodes in S (e.g. between subsystems), so we compress these edges into a single edge

and change the label to be a vector label, reflecting the multiple signals on that edge.
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(a) Step 1: Identify the manifest variables
(shaded blue).
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(b) Step 2: Remove all input and output
nodes, along with any edges adjacent to these
nodes.
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(c) Step 3: Remove any outgoing edges from
any remaining manifest variables.
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(d) Step 4: Remaining connected components
correspond to subsystems.
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(e) Step 5: Reintroduce the input and output vari-
ables as exosystem nodes, and replace all removed
edges, compressing any duplicate edges into a sin-
gle edge.

Figure 2.5: Subsystem structure, built from a system’s complete computational structure.
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Now, compare the resulting subsystem structure with the results we obtain if we work

directly from the equations defining the original subsystems in Example 2 leading up to

Equation (2.6). If we find the transfer function of each subsystem individually, build the

associated subsystem matrix S, and then interconnect appropriately, we recover the following

structured LFT:

N =

266666666666666666666666666666666664

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

377777777777777777777777777777777775

(2.16)

S =
1

s2 + 3s+ 2

266666664

0 s+ 2 0 s+ 2 0 0 0 0

s+ 1 1 s+ 1 1 0 0 0 0

0 0 0 0 2
s+3 s+ 2 2

s+3 s+ 2

0 0 0 0 s+1
s+3 0 s+1

s+3 0

377777775
Compare the results of the structured LFT with the signal structure in Figure 2.5e.

Notice that building the subsystem structure according to Definition 3 leads to the same result;

both processes construct the same graph. Nevertheless, building subsystem structure directly

from C sheds insight into the meaning of subsystems, as the connected components of the

hidden structure of C .
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These procedures uniquely specify (N,S) and S from a generalized state space model

and its complete computational structure, C . This implies that the system models and their

associated structural representations considered so far produce a totally ordered set with

respect to the relation, “uniquely specified by.” These are, in order of increasing structural

informativity:

1. Functional system descriptions and the manifest structure, (uniquely specified by)

2. Structured LFTs and the subsystem structure, (uniquely specified by)

3. Generalized state space models and the complete computational structure.

The next section considers an alternative approach for representing systems, focusing on the

interaction among manifest signals as opposed to the interconnection among subsystems.

2.4 Dynamical Structure Functions and the Signal Structure

One of the di�culties in learning a system’s subsystem structure from data is that it necessarily

partitions the system states into subsystem groups, so one must be able to identify the correct

subsystem for each state variable–even those that are “hidden,” or not directly manifest.

This section considers a system representation that precisely characterizes the interaction

between manifest signals without drawing any conclusions about “hidden” variables. This

ability to remain agnostic about the structural role of hidden variables not only makes this

representation easier to learn from data, but it also makes it extremely useful for describing

systems with a “fluidic” component that makes the very idea of subsystems di�cult to

conceptualize, such as chemical reaction processes or market behavior.

This representation, called the dynamical structure function (DSF), like the structured

LFT and the subsystem structure, is part of a totally ordered set with respect to the relation,

“uniquely specified by.” This is, in order of increasing structural informativity:

1. Functional system descriptions and the manifest structure, (uniquely specified by)

2. Dynamical structure functions and the signal structure, (uniquely specified by)
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3. Generalized state space models and the complete computational structure.

Note that representations of the signal structure similar to the dynamical structure

function are found across the literature, especially in the area of network reconstruction,

[18, 36, 42]. Here we define a system’s dynamical structure function by considering the

zero-intricacy realization of each subsystem in a generalized state space model, as in (2.1).

The overall dynamical structure function of a system is determined by finding the dynamical

structure function of each subsystem and then interconnecting them using block diagram

algebra.

Without loss of generality, the dynamical structure function of a subsystem charac-

terized by the zero-intricacy realization (A,B,C,D) is determined if we let p1  p be the

rank of C and assume without loss of generality that the outputs y = [y01 y02]
0, y1 2 Rp and

y2 2 R(l�p), are ordered so the first p rows of C are linearly independent, i.e.

C =

264 C1

C2

375 (2.17)

with C1 2 Rp⇥n being full row rank. The dynamical structure function of the system with

respect to y1 is then given by a pair of (l ⇥ p) and (l ⇥m) real rational matrix functions,

(Q̂(s), P̂ (s)), defined over the Laplace variable, s 2 C.

In order to determine the a view of the system from the perspective of the manifest

variables, first create the (n⇥ n) state transformation:

T =


C 0

1 E1

�0
, (2.18)

where E1 2 Rn⇥(n�p) is any basis of the null space of C1, with

T�1 =


R1 E1

�
, (2.19)
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where R1 = C 0
1(C1C 0

1)
�1.

Change basis such that z = Tx, yielding Â = TAT�1, B̂ = TB, Ĉ = CT�1, and

D̂ = D, and partitioned commensurate with the block partitioning of T and T�1 to give

264 ż1

ż2

375 =

264 Â11 Â12

Â21 Â22

375
264 z1

z2

375+

264 B̂1

B̂2

375 u

264 y1

y2

375 =

264 I 0

Ĉ21 0

375
264 z1

z2

375+

264 D̂1

D̂2

375 u

(2.20)

Note that while it is easily seen that C1R1 = I and C1E1 = 0, but the fact that

C2E1 = 0 may demand some reflection. The reason this is true is because every row of C2 is

in the row space of C1. If it were not so, then either the rank of C would be greater than

p or C1 would not be composed of p linearly independent rows. Being in the row space of

C1, each row in C2 is thus also orthogonal to every vector in E1, which spans the orthogonal

complement of the row space of C1.

Assume zero initial conditions, take Laplace transforms, and solve for Z2, yielding

sZ1 =
h
Â11 + Â12(sI � Â22)

�1Â21

i
Z1 +

h
B̂1 + Â12(sI � Â22)

�1B̂2

i
U (2.21)

264 Y1

Y2

375 =

264 I 0

Ĉ21 0

375
264 Z1

Z2

375+

264 D̂1

D̂2

375U (2.22)

where Z, U , and Y denote the Laplace transforms of z, u, and y respectively.

For notational simplicity, define:

W (s) = Â11 + Â12(sI � Â22)
�1Â21 (2.23)
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V (s) = B̂1 + Â12(sI � Â22)
�1B̂2 (2.24)

and let D
W

(s) = diag(W (s)) be a diagonal matrix function composed of the diagonal entries

of W (s).

Define Q(s) = (sI �D
W

)�1(W �D
W

) and P (s) = (sI �D
W

)�1V yielding

Z1 = Q(s)Z1 + P (s)U (2.25)

264 Y1

Y2

375 =

264 I 0

Ĉ21 0

375
264 Z1

Z2

375+

264 D̂1

D̂2

375U (2.26)

Noting from (2.25) that Z1 = Y1 � D1U , the dynamical structure function of a

zero-intricacy state space realization of the form (2.1) with respect to y1 is then given by:

Q̂(s) =

264 Q(s)

C21

375 , P̂ (s) =

264 P (s) + (I �Q(s))D1

D2 � C21D1

375 (2.27)

which satisfies 264 Y1

Y2

375 = Q̂(s)Y1 + P̂ (s)U (2.28)

Definition 4. The signal structure of a system is denoted W , with a vertex set V (W ) and

edge set E(W ), [70]. The elements of a system’s signal structure is defined to be:

• V (W ) = {u1, ..., um

, y11, ..., y1p1 , y21, ..., y2p2}, each representing a manifest variable of

the system with p2 = p� p1, and

• E(W ) contains an edge from v
i

2 V (W ) to v
j

2 V (W ) if the associated entry of Q and

P is nonzero.
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Unlike the subsystem structure, the signal structure uses circular nodes to denote

signals rather than systems, while the edges between these signals represent systems since

it is a condensation graph of the signal flow representation of the complete computational

structure.

A key aspect of the derivation of the dynamical structure function is the transformation

of the form (2.18) used to put C in the desired form. This transformation has several important

properties, detailed below.

The first property of the transformed system is that it is invariant to a change of basis

on the hidden states, much in the way a transfer function is invariant to state transformations.

This essentially means that transforming the internal structure of hidden states does not

change the input-output dynamics of the hidden states. This concept is formalized in

Lemma 1.

Lemma 1. (Invariance to a Class of Block Diagonal Transformations) Given a

system (A,B,C,D) of the form (2.20) with dynamical structure function (Q̂, P̂ ), then (Q̂, P̂ )

is invariant to block diagonal state transformations; that is, the set of systems characterized

by block diagonal state transformations,

S = {(MAM�1,MB,CM�1, D) | M =

264 I
p⇥p

0

0 M22

375}
with M22 any invertible matrix of appropriate size, all share the same dynamical structure

function, (Q̂, P̂ ).
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Proof. Transforming the given system, z = Mz, yields

264 ż1

ż2

375 =

264 A11 A12M
�1
22

M22A21 M22A22M
�1
22

375
264 z1

z2

375+

264 B1

M22B2

375 u

264 y1

y2

375 =

264 I 0

C21 0

375
264 z1

z2

375+

264 D1

D2

375 u

(2.29)

which leads to

W (s) = A11 + A12M
�1
22 (sI �M22A22M

�1
22 )

�1M22A21

= A11 + A12(sI � A22)�1A21,
(2.30)

V (s) = B1 + A12M
�1
22 (sI �M22A22M

�1
22 )

�1M22B2

= B1 + A12(sI � A22)�1B2.
(2.31)

Since W (s) and V (s) are invariant to M22, (Q̂, P̂ ) also remain unchanged with respect to

M22.

Note that Lemma 1 shows that the dynamical structure function is invariant to

transformations on the manner in which hidden states interact with other hidden states on

not how hidden states interact with measured states.

The second property of the state transformation (2.18) is that the choice of basis of

the null space does not change the dynamical structure function. This is important because

it means an optimal basis for the determination of the dynamical structure function is not

required and, more importantly, that the dynamical structure function only depends on

the states chosen to represent the view of the system. Note that this means the dynamical

structure function is sensitive to the choice of C1 in (2.17). This concept is formalized in

Theorem 2.

42



www.manaraa.com

Theorem 2. (Invariance to Basis of the Null Space) Given a system (A,B,C,D) as

in (2.1), consider two distinct bases of the null space of C, E 6= E, with corresponding state

transformations:

T =

264 C1

E 0

375 , T =

264 C1

E
0

375 ,

as in (2.18), and each leading to its corresponding dynamical structure function, (Q̂, P̂ ) and

(Q,P ) as in (2.27). Then (Q̂, P̂ ) = (Q,P ).

Proof. Let z = Tx and z = Tx. Then z = TT�1z:

TT�1 =

264 C1

E
0

375
R1 E

�
=

264 I 0

0 E
0
E

375 (2.32)

where R1 = C 0
1(C1C 0

1)
�1. The block diagonal structure of TT�1 then ensures, by Lemma

1, that the dynamical structure function produced for z is the same as that for z, i.e.

(Q̂, P̂ ) = (Q,P ).

The last property explored here is the invariance of the dynamical structure function

to state permutations, this means that permuting the states of the dynamical structure

function reveals the same dynamical structure function with a renumbering of the measured

states. This concept is formalized in Theorem 3.

Theorem 3. (Invariance to State Permutations) Consider a system as in (2.1) with

state matrices (A,B,C,D) and dynamical structure function (Q̂, P̂ ). Then (Q̂, P̂ ) is invariant

to state permutations; that is, the set of systems characterized by state permutations,

S = {(MAM�1,MB,CM�1, D) | M is a permutation matrix},

all share the same dynamical structure function, (Q̂, P̂ ), up to a permutation.
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Proof. The result follows from the fact that that the state transformation selected in Step 1

of constructing the dynamical structure function transforms each system in the set S to the

same system for Step 2; the resulting dynamical structure function is thus the same, up to

a permutation. To see this, consider the transformation T constructed for the unpermuted

system, (A,B,C,D):

T =

264 C1

E 0
1

375 , T�1 =


R1 E1

�
,

and compare with the transformation T
M

constructed for any permuted system, (MAM�1,

MB, CM�1, D):

T
M

=

264 C1

E 0
1

375M�1 = TM�1,

T�1
M

= M


R1 E1

�
= MT�1.

Applying each set of transformations to their respective systems yields the same transformed

system, thus producing the same dynamical structure function:

(T
M

MAM�1T�1
M

, T
M

MB,CM�1T�1
M

, D) = (TAT�1, TB,CT�1, D).

Example 5. Given the generalized state space model in (2.6) with complete computational

structure shown in Figure 2.1, the dynamical structure function is given in (2.33), the

procedure for determining the corresponding signal structure from a system’s generalized state

space model is then outlined in Figure 2.6.

Q =

266666664

0 0 0 1
s+1

1
s+2 0 1

s+2 0

0 2
s+1 0 1

s+1

0 0 1
(s+2)(s+3) 0

377777775
, P =

266666664

0 1
s+1 0 0

1
s+2 0 0 0

0 0 0 1
s+1

0 0 1
(s+2)(s+3) 0

377777775
(2.33)
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(a) Step 1: Begin with a generalized Complete
Computational Structure.

u1 

u2 

y1 

y2 

u3 

u4 

y3 

y4 

x1 

x2 

x3 

x4 

x5 

(b) Step 2: Transform each subsystem so that
C1 =

⇥
I 0

⇤

u1 

u2 

x1 

x2 

y1 

y2 

u3 

u4 

x3 

x4 

y3 

y4 

(c) Step 3: Remove hidden nodes from the
subsystems, maintaining pathways from man-
ifest variable i to manifest variable j through
the removed hidden nodes.

u1 

u2 

u3 

u4 

y1 

y2 

y3 

y4 

(d) Step 4: Rename manifest state variables,
x, to their corresponding output variables,
y, while removing the edges from manifest
states to outputs along with the correspond-
ing node.

Figure 2.6: Signal structure, built from a system’s complete computational structure

2.5 Relationship Among System Representations

The transfer function associated with a given dynamical structure function is given by

H(s) = (I �Q)�1P (2.34)

which is found easily from (2.28) when Y2 is of length zero. We note that I �Q is invertible

since Q is a square, hollow transfer function matrix, so I � Q will always have full rank.

45



www.manaraa.com

Necessary and su�cient conditions for determing a dynamical structure function given a

system’s transfer function were developed in [7].

Comparing the signal structure to subsystem structure, Example 6 shows that it is

possible for a system’s signal structure to be consistent with two or more subsystem structure

representations. Example 7 shows it is also possible for a system’s subsystem structure to be

consistent with two or more dynamical structure functions. The implication of this result

is that these two partial structure system representations denote two di↵erent notions of

structure within a system.

Example 6. Given the complete computational structure shown in Figure 2.7a, the associated

subsystem structure was found to be that shown in Figure 2.7b. Given a second complete

computational structure in Figure 2.7c, the associated subsystem structure is shown in

Figure 2.7d. Note that this complete computational structure is the same structure as the

computational structure of the zero-intricacy realization of Figure 2.7a.

The two structures are distinguished by the fact that the zero-intricacy structure in

Figure 2.2 is a computational structure, meaning that it is not complete and the associated

complete computational structure required auxiliary variables to model various compositions

of functions. The complete computational structure given in Figure 2.7c, however, has the

same structure, but no auxiliary variables were utilized for composition of functions, so the

structure is considered complete.

The corresponding signal structure for both complete computational structures is then

given in Figure 2.7e, thus we have shown that it is possible for a single signal structure to be

consistent with multiple subsystem structures.
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(a) The complete computational structure of
a system.
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(b) This yields a subsystem structure of two
systems in feedback.
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u3 
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(c) A complete computational structure with-
out any intricacy variables.
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y4 

(d) This yields a new subsystem structure
with a single subsystem.

u1 
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u3 

u4 

y1 

y2 

y3 

y4 

(e) The signal structure is the same for both complete
computational structures.

Figure 2.7: Signal structure, Figure 2.7e, consistent with two subsystem structures, Figures
2.7b and 2.7d
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Example 7. Given the complete computational structure in Figure 2.8a, which is the complete

computational structure from Figure 2.1 with an edge removed (highlighted in red), the

associated subsystem structure (shown in Figure 2.8b) does not change. Transforming the

system to get C =


I 0

�
in each subsystem, yields the structure given in Figure 2.8c, which

is similar to the transformed structure given in Figure 2.6b, with an extra edge, highlighted in

red. The associated signal structure is then given in Figure 2.8d, also containing an extra

edge meaning the subsystem structure given in Figure 2.8b is consistent with multiple signal

structures.
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(a) Remove an edge from the complete com-
putational structure.
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y4 

(b) The subsystem structure remains the
same since, with two subsystems in feedback.

u1 

u2 

x1 

x2 

y1 
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x4 

x5 

y3 

y4 

(c) The transformed internal structure with
an extra edge.

u1 

u2 

u3 

u4 

y1 

y2 

y3 

y4 

(d) The signal structure with an extra edge
that does not exist in Figure 2.7e.

Figure 2.8: Subsystem structure, Figure 2.8b, consistent with two signal structures, Figures
2.7e and 2.8d
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One of the properties of the signal structure of a system that distinguishes it from the

subsystem structure is known as shared hidden states.

Definition 5. A shared hidden state is a state within a system that is not manifest, i.e. that

is part of the hidden structure, that has either multiple pathways from it that lead towards a

manifest structure or multiple pathways that come from manifest structure or both.

When a system contains a shared hidden state, the associated signal structure is

agnostic to that state, meaning that it allows for hidden states to be shared across system

edges. In contrast, the subsystem structure does not allow for hidden states to be shared

across systems. Therefore, when shared hidden states exist in a system the signal structure

contains more structural information than the subsystem structure as shown in Figure 2.9.

Moreover, since the signal structure is agnostic to shared hidden states, the process of

determining a unique dynamical structure function from a system’s transfer function has

reasonable conditions unlike the subsystem structure of the system.

u1 

u2 

x1 

x2 

y1 

(a) Complete computational structure with
shared hidden node.

u1 

u2 

y1 

(b) Signal structure containing paths that repre-
sent two separate systems.

u1 

u2 

S1 y1 

(c) Subsystem structure containing only a single
subsystem.

Figure 2.9: Shared Hidden State

The dynamical structure function of a system is uniquely defined given a zero-intricacy

state space model, as derived previously in this section. Determining a unique state space
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model given a system’s dynamical structure function is an ill-posed problem, though a

procedure for determining a minimal state space realization given a dynamical structure

function (Q,P ) was given in [72].
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Chapter 3

Identifiability Conditions of the Dynamical Structure Function

(Published at CDC 2012 as “Dynamical Structure Function Identifiability Conditions

Enabling Signal Structure Reconstruction”)

Abstract

Networks of controlled dynamical systems exhibit a variety of interconnection patterns

that could be interpreted as the structure of the system. One such interpretation of system

structure is a system’s signal structure, characterized as the open-loop causal dependencies

among manifest variables and represented by its dynamical structure function. Although this

notion of structure is among the weakest available, previous work has shown that if no a priori

structural information is known about the system, not even the Boolean structure of the

dynamical structure function is identifiable. Consequently, one method previously suggested

for obtaining the necessary a priori structural information is to leverage knowledge about

target specificity of the controlled inputs. This work extends these results to demonstrate

precisely the a priori structural information that is both necessary and su�cient to reconstruct

the network from input-output data. This extension is important because it significantly

broadens the applicability of the identifiability conditions, enabling the design of network

reconstruction experiments that were previously impossible due to practical constraints on the

types of actuation mechanisms available to the engineer or scientist. The work is motivated

by the proteomics problem of reconstructing the Per-Arnt-Sim Kinase pathway used in the

metabolism of sugars.
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3.1 Introduction: Network Reconstruction

Two fundamental properties characterizing networks of controlled dynamical systems include

their overall, dynamic behavior and their network structure. Since interconnections of

systems are themselves systems, standard mathematical representations of systems can be

used to describe networks of controlled dynamical systems. Nevertheless, while di↵erent

representations may describe the same overall dynamic behavior of the network, they can

convey very di↵erent information about the network’s underlying structure.

Consider, for example, an nth order, causal linear time-invariant system with m inputs

and p outputs. This system may be described both by a p ⇥ m transfer function (TF)

matrix G(s) and a state space realization characterized by the matrices (A,B,C,D). If

G(s) = C(sI � A)�1B +D, then both of these representations describe the overall dynamic

behavior of the system. Nevertheless, these representations carry very di↵erent information

about the system’s internal network structure.

In particular, the sparsity pattern of G reveals closed-loop dependencies of the outputs

on inputs. Thus, for example, if G were diagonal, then any dependencies that output i may

have on any other input, other than input i, must be exactly cancelled internally within the

system. This sparsity structure of the TF is the weakest notion of system structure that we

typically consider.

On the other hand, the state space realization describes detailed information about

the dependencies among inputs, state variables, and outputs. This o↵ers a much stronger

understanding of system structure; it conveys everything revealed by the sparsity structure of

the TF and much more about system structure. For example, knowing the state realization can

determine whether a system with a diagonal TF G is truly decoupled, or whether o↵-diagonal

dependencies between inputs and outputs are externally hidden by exact cancellations within

the system.

Because di↵erent representations of the same system describe di↵erent amounts of

structural information, they need di↵erent experimental conditions to be correctly identified.
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For example, a rich theory of system identification has detailed su�ciency of excitation and

sample complexity requirements necessary to determine a system’s TF from input-output

data [71]. Discovering richer structural information than the sparsity structure of the TF,

however, demands additional a priori knowledge about the system. For example, if one not

only met the requirements to identify a system’s TF from input-output data, but also knew

that the measured outputs were, in fact, the system’s state variables, then the state space

representation of the system could also be identified.

For many applications, the experimental burden necessary to identify a network’s

state space realization is prohibitive, while the burden necessary to identify the associated

TF may be reasonable. In these situations, and when additional structural information about

the system is desired, another representation of the system may be employed that describes

more structural information than the TF yet less than the state space realization (and thus

incurring less of an experimental burden). The dynamical structure function (DSF) of a

linear time-invariant system is just such a partial-structure representation.

This paper describes the experimental burden necessary and su�cient to identify

a system’s DSF. This burden is characterized in terms of parts of the DSF that must be

known a priori so that knowledge of the TF, identified from input-output data, would then

uniquely specify the remaining parts of the DSF. Previous work has shown that if only the

input-output data necessary to identify the system’s TF are known a priori, then not even the

Boolean structure, which denotes the presence of a causal relationships without its e↵ects, of

the DSF can be reconstructed. On the other hand, if one additionally knows that each input,

u
i

, exhibits target specificity, in that it only a↵ects outputs y
j

though its associated output,

y
i

, then the DSF can be uniquely reconstructed from su�ciently informative input-output

data or knowledge of the system TF [24].

In this paper we show that, while target specificity is a su�cient condition for

reconstruction of the DSF, it is not necessary. By providing a complete set of necessary

and su�cient conditions for reconstruction of a system’s DSF, we significantly broaden the
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applicability of the associated reconstruction results [24, 60, 70, 73] . The next section

details mathematical preliminaries concerning DSF as a partial-structure representation of a

system. The main result then follows, with necessary and su�cient identifiability conditions

for reconstructing a system’s DSF. The last section motivates the utility of these new results

with a network reconstruction problem from proteomics where target specificity can not be

guaranteed. Conclusions follow.

3.2 Dynamical Structure Functions

This section gives an overview of the derivation of DSF as discussed in [24]. To see how the

DSF is derived, consider the system given by:

264 ẏ

ẋ

375 =

264 A11 A12

A21 A22

375
264 y

x

375+

264 B1

B2

375 u

y =


I 0

�264 y

x

375 .

(3.1)

Note that C =


I 0

�
allows the variables to be separated into the measured states, y, and

the unmeasured states, x.

Equation (3.1) describes the state space realization of the system, which contains

information about the dependency among input, state, and output variables and defines both

the structure and dynamics of the entire network.

The next step in the derivation of the DSF is to take Laplace Transforms of the signals

in (3.1). Assuming zero initial conditions we get:

264 sY

sX

375 =

264 A11 A12

A21 A22

375
264 Y

X

375+

264 B1

B2

375U (3.2)
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Solving for X, gives:

X = (sI � A22)
�1 A21Y + (sI � A22)

�1 B2U

Substituting into the first equation of (3.2) then yields

sY = WY + V U

where W = A11+A12 (sI � A22)
�1 A21 and V = A12 (sI � A22)

�1 B2+B1. Let D be a matrix

with the diagonal term of W , i.e. D = diag(W11,W22, ...,Wpp

). Then,

(sI �D)Y = (W �D)Y + V U

Note that sI �D is always invertible since D is always proper. We then have:

Y = QY + PU (3.3)

where

Q = (sI �D)�1 (W �D) (3.4)

and

P = (sI �D)�1 V (3.5)

Note that since W �D is a hollow matrix (a matrix with zeros along the diagonal), then Q

is also a hollow matrix.

The matrix Q is a matrix of strictly proper TF from Y
i

to Y
j

, i 6= j relating each

measured signal to all other measured signals. Likewise, P is a matrix of strictly proper

TF from each input to each output without depending on any additional measured state Y
i

.
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Together, the pair (Q(s), P (s)) is the DSF for the system, a partial structure representation

of the system.

Definition 6. Given the system (3.1), we define the dynamical structure function of

the system to be (Q,P ), where Q and P are the internal structure and control structure,

respectively, and are given as in (3.4) and (3.5).

3.2.1 Meaning of the Dynamical Structure Function

The DSF describes the network structure of the system (3.1) in the sense that the matrix Q

can be interpreted as the weighted adjacency matrix of a directed graph, an example of which

is shown in Figure 3.1, indicating the causal relationships between measured states. Also,

P is the weighted adjacency matrix of a directed graph indicating the causal relationships

between inputs and measured states. The weights on the edges of this graph are TF between

relevant variables. This graphical representation of the system is referred to as the signal

structure of the system.

Note that the TF matrix of the graph in Figure 3.1 would be full because every input

a↵ects each output, whether it be directly or indirectly. The DSF, on the other hand, contains

more information about the structure of the system since each edge represents the open-loop

causal dependencies of the manifest variables.

The way in which a DSF represents the open-loop causal dependencies of a system is

seen via the following theorem:

Theorem 4. Let (A,B) be the matrices from the state-space representation of an LTI system,

and (Q,P ) its dynamical structure function.

1. If Q
ij

is nonzero, then either A
ij

is nonzero or there exists a sequence k1, k2, ... of indices

corresponding to hidden states such that A(i, k1), A(k1, k2), ..., A(km�1, km), A(km, j) are

nonzero
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y2 

y1 y3 

u1 u3 

u2 

Q21 Q32 

Q13 

P11 

P22 

P33 

Figure 3.1: Signal Structure representation of a system with three inputs and three outputs.
Note that the transfer function for this system is fully connected, while the dynamical
structure function, and its associated signal structure, exhibits a particular ring structure.

2. If P
ij

is nonzero, then either B
ij

is nonzero or there exists a sequence k1, k2, ... of indices

corresponding to hidden states such that A(i, k1), A(k1, k2), ..., A(km�1, km), A(km, j) and

B(k
m

, j) are nonzero

Proof. We proceed with a proof by contradiction. Assume that Q
ij

is nonzero, but that A
ij

is zero and there does not exist a sequence k1, k2, ... of indices corresponding to hidden states

such that A(i, k1), A(k1, k2), ..., A(km�1, km), A(km, j) are nonzero. Then, we see that:

W
ij

= A
ij

+ (A12 (sI � A22)
�1 A21)ij = 0

From the definition of Q in (3.4), we note that the o↵-diagonal values of Q are nonzero

(zero) when the o↵-diagonal values of W are nonzero (zero). Thus,

W
ij

= 0 =) Q
ij

= 0
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which gives us a contradiction. The proof for part (b) is similar.

3.2.2 Relationship of the Dynamical Structure Function to a System’s Transfer

Function

Given any system (3.1), its DSF, like its TF, is uniquely specified. However, although the

system’s TF contains the dynamics of the system, it yields no information about the structure

of the network . The direct relationship between a system’s DSF and it’s TF can be defined

as:

Lemma 2. [24] The transfer function, G, of the system (3.1), is related to its dynamical

structure, (Q,P ), by

G = (I �Q)�1P (3.6)

This follows from (3.3) and Y = GU .

3.2.3 Signal Structure Reconstruction

Network reconstruction considers the problem of finding the DSF of a given system, which is

consistent with its TF. This makes it similar to the realization problem, which is concerned

with finding the state-space description that is consistent with a system’s TF, shown in

Figure 3.2.

The problem of reconstruction is ill-posed, however, since there are many di↵erent

state space realizations that are consistent with a given TF, G, or DSF, (Q,P ). The only

way to reconstruct the system and yield the state space model is if the system has full state

feedback, meaning that every node in the system is measured. Since this is not generally

possible, various assumptions need to be made about the system a priori or more information

about the system is needed before the state space realization can be determined.
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Data     Models 
Reconstruction Realization 

Identification 

Transfer 
Function 

Dynamical 
Structure Function 

State 
Realization 

Structural 
Informativity 

G (Q,P) (A,B,C,D) 

Figure 3.2: Di↵erent types of models of the same system describe di↵erent amounts of
structural information. The reconstruction problem, like the realization problem, requires
additional information about the system above and beyond the input-output data necessary
to identify the transfer function.

The same is true when attempting to determine a system’s DSF from a system’s TF.

In fact, defining A0 to be the conjugate transpose of the matrix A, we get the following

relationship between the DSF and TF of a system:

Lemma 3. [24] Given a transfer function G, the set SG of all dynamical structure functions

consistent with G can be parameterized by a p⇥ p internal structure function Q̃ and is given

by

SG =

8<:(Q,P ) :

24 Q0

P 0

35 =

24 0

G0

35+

24 I

�G0

35 Q̃0, Q̃ 2 Q

9=;, (3.7)

where Q is the set of internal structure functions. Moreover, the set SG has p2 � p degrees

of freedom.

Thus, the reconstruction problem can be characterized as in [24] with the following

theorem:

Theorem 5. Given any p ⇥m transfer function G, with p > 1 and no other information

about the system, dynamical and boolean reconstruction is not possible. Moreover, for any

internal structure Q, there is a dynamical structure function (Q,P ) that is consistent with G.
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However, since the DSF (Q,P ) is a partial structure representation of the network,

less information is needed for the DSF to be reconstructed than for the entire state space to

be realized.

The following corollary from previous work indicates what partial-structure information,

which refers to knowledge of some of the elements of Q or P , is su�cient for dynamical

structure reconstruction.

Corollary 1. [24] If m = p, G is full rank, and there is no information about the internal

structure, Q, then the dynamical structure can be reconstructed if each input controls a

measured state independently, that is, without loss of generality, the inputs can be indexed

such that P is diagonal.

This section served to describe the reconstruction methodology and the basic require-

ments for reconstruction of the DSF of a system such as (3.1). Equipped with this description,

we are now prepared to extend the details discussed in this section in order to allow for

systems whose states cannot be independently controlled. These systems have a P matrix

that is not diagonal, hence previous methods have to be extended to accommodate them.

3.3 Main Result

Identifiability conditions fundamentally concern the definition of a map from model parameters

to data and ensuring that it is injective. In this way, a particular set of parameters is uniquely

specified by the data, identifying the correct model from the set of models under consideration.

Identifying a system’s DSF from data involves the standard issues related to identifying

a TF from data (su�ciency of excitation, etc.), along with additional issues related to the fact

that many DSF generate the same TF (consider Lemma 3). In the sequel we will ignore the

standard issues and focus on the additional identifiability issues unique to DSF. Consequently

we will assume that the system’s TF has been successfully identified from data and focus

on necessary and su�cient conditions for then recovering the DSF. To accomplish this, we
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will construct the map from the elements of the DSF to the associated TF and establish

conditions ensuring this map is injective.

To facilitate the discussion, we introduce the following notation. Let A 2 Cn⇥m and

B 2 Ck⇥l. Then:

• blckdiag(A,B) is the block diagonal matrix given by

264 A 0

0 B

375 ,

• a
i

is the ith column of matrix A,

• A�i

is the matrix A without it’s ith column,

• a
ij

is the (i, j)th entry of matrix A,

• A0 is the conjugate transpose of matrix A,

• R(A) is the range of A,

• �!a is the vector stack of the columns of A, given by

266666664

a1

a2
...

a
m

377777775

• and  �a is the vector stack of the columns of A0.

The construction of a map from elements of the DSF to the associated TF begins by

rearranging the relationship from Lemma 2 in Equation (3.6) to yield:


I G0

�264 P 0

Q0

375 = G0 (3.8)
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Noting that

AX = B () blckdiag(A, ...,A)~x = ~b

and defining X =


P 0 Q0

�
then allows us to rewrite Equation (3.8) as


I blckdiag(G0, ..., G0)

�
 �x = �g . (3.9)

Further noting that since the diagonal elements of Q are identically zero and the dimensions

of P , Q, and G are p ⇥ m, p ⇥ p, and p ⇥ m respectively, then exactly p elements of  �x

are always zero. Abusing notation, we can then redefine  �x to remove these zero elements,

reducing Equation (3.9) to the following:


I blckdiag(G0

�1, G
0
�2, ..., G

0
�p

)

�
 �x = �g . (3.10)

Equation (3.10) reveals the mapping from elements of the DSF, contained in  �x ,

to its associated TF, represented by  �g . The mapping is clearly a linear transformation

represented by the matrix operator


I blckdiag(G0

�1, G
0
�2, ..., G

0
�p

)

�
. This matrix has

dimensions (pm)⇥ (pm+ p2� p), and thus the transformation is certainly not injective. This

is why not even the Boolean structure of a system’s DSF can be identified – even from perfect

information about the system’s TF – without additional a priori structural information.

Identifiability conditions will thus be established by determining which elements of  �x

must be known a priori in order to reduce the corresponding transformation to an injective

map. To accomplish this, consider the (pm+ p2 � p)⇥ k transformation T such that

 �x = Tz (3.11)

where z is an arbitrary vector of size k. The following lemma describes technical conditions

on T establishing necessary and su�cient identifiability conditions for DSF reconstruction.
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Lemma 4. Let

M = LT, (3.12)

where L =


I blckdiag(G0

�1, G
0
�2, ..., G

0
�p

)

�
and T is a (pm+ p2 � p)⇥ k matrix operator

as in Equation (3.11). Then M is injective if and only if

1. k  pm, and

2. rank(T ) = k (i.e. T is injective).

Proof. Since


I blckdiag(G0

�1, G
0
�2, ..., G

0
�p

)

�
has rank pm, rank(M) = min(pm, rank(T )).

If rank(T ) > pm, implying k > pm, then M is clearly not injective. If rank(T )  pm, then

rank(M) = rank(T ) and M will be injective if and only if k = rank(T ).

Theorem 6. (Identifiability Conditions) Given a system characterized by the transfer function

G, its DSF (Q,P ) can be identified if and only if

1. M , defined as in Equation (3.12), is injective, and

2.  �g 2 R(M).

Proof. The proof follows immediately from the observation that M is the mapping from

unidentified model parameters to the system TF. Under these conditions one can clearly

solve for z given G and then construct the DSF from  �x , where  �x = Tz, and T is precisely

the a priori system information that is necessary and su�cient for reconstruction.

We will now illustrate this reconstruction result on some simple examples.

Example 8. Consider a system with square TF given by

G =

266666664

G11 G12 ... G1p

G21 G22 G2p

...
. . .

...

G
p1 G

p2 ... G
pp

377777775
.

63



www.manaraa.com

Previous work has shown that if G is full rank and it is known, a priori, that the control

structure P is diagonal that reconstruction is possible [24]. Here we validate that claim by

demonstrating that the associated T matrix becomes:

26666666666666666666666666664

P11

P12

...

P21

P22

...

P
pp

Q12

...

Qp(p� 1)

37777777777777777777777777775

=

26666666666666666666666666664

1 0 ... 0 0

0 0 ... 0 0

...
...

. . .
...

0 0 ... 0 0

0 1 ... 0 0

...
. . . . . .

...

0 ... 1 ... 0

0 ... 0 1 0

...
. . .

...
. . .

...

0 ... 0 0 1

37777777777777777777777777775

2666666666666666664

P11

P22

...

P
pp

Q12

...

Q
p(p�1)

3777777777777777775

yielding the operator M = LT as:

M =

266664
e1 0 0 G0

�1 ... 0

0
. . . 0 0

. . . 0

0 ... e
p

0 ... G0
�p

377775
where e

i

is a zero vector with 1 in the ith position. Note that M is a square matrix with

dimensions p2 ⇥ p2 and will be invertible provided G is full rank, thus enabling reconstruction.

Example 9. Given the following TF of a system:

G =

264 s+2
s

2+3s+1 � s

2+3s+3
(s+2)(s2+3s+1)

s+2
(s+1)(s2+3s+1)

s

2+s�1
(s+1)(s2+3s+1)

375
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We attempt to find the DSF (Q,P ) of the system:

Q =

264 0 Q12

Q21 0

375 and P =

264P11 P12

P21 P22

375

yielding the vector of unknowns ~x =


P11 P12 P21 P22 Q12 Q21

�0
. This gives us the

system of equations of the form L~x = ~b:

266666664

1 0 0 0 s+2
(s+1)(s2+3s+1) 0

0 1 0 0 s

2+s�1
(s+1)(s2+3s+1) 0

0 0 1 0 0 s+2
s

2+3s+1

0 0 0 1 0 � s

2+3s+3
(s+2)(s2+3s+1)

377777775

2666666666666664

P11

P12

P21

P22

Q12

Q21

3777777777777775
=

266666664

s+2
s

2+3s+1

� s

2+3s+3
(s+2)(s2+3s+1)

s+2
(s+1)(s2+3s+1)

s

2+s�1
(s+1)(s2+3s+1)

377777775

Without additional information a priori structural information, we can not reconstruct.

Suppose, however, that we know a priori that P takes the form:

P =

264P11 �P11

0 P22

375
Note that this non-diagonal P fails to meet the previous conditions for reconstruction

[23, 24]. Nevetheless, the vector of unknowns ~x can then be decomposed into the form T~z as
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follows:

T =

2666666666666664

1 0 0 0

�1 0 0 0

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3777777777777775
and ~z =


P11 P22 Q12 Q21

�0

Replacing ~x with T~z above yields the system of equations of the form M~z = ~b, where

M = LT :

266666664

1 0 s+2
(s+1)(s2+3s+1) 0

�1 0 s

2+s�1
(s+1)(s2+3s+1) 0

0 0 0 s+2
s

2+3s+1

0 1 0 � s

2+3s+3
(s+2)(s2+3s+1)

377777775

266666664

P11

P22

Q12

Q21

377777775
=

266666664

s+2
s

2+3s+1

� s

2+3s+3
(s+2)(s2+3s+1)

s+2
(s+1)(s2+3s+1)

s

2+s�1
(s+1)(s2+3s+1)

377777775
In this case M is full rank, from theorem 6 we know that the system is reconstructible. By

solving for ~x = (M)�1~b we get the DSF to be:

Q =

264 0 1
s+2

1
s+1 0

375 and P =

264 1
s+1 �

1
s+1

0 1
s+2

375
3.4 Motivating Example: The PAS Kinase Pathway

An example of such a network is the Per-Arnt-Sim (PAS) Kinase Pathway. Human mutations

in the PAS Kinase Pathway have recently been linked to the early development of type 2

diabetes [55]. The PAS Kinase Pathway is composed of proteins that interact in specific ways

to direct the metabolism of sugars in eukaryotic cells. Each of these proteins have both an

activated and a deactivated form that serves a distinct function within the network. The
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identification of network structure in this system is an ideal application of signal structure

theory.

Several PAS Kinase networks have been proposed such as in [32], so analysis of such a

pathway with the DSF method would help to indicate flaws or validate proposed biological

pathways. Yeast serves as a model biological organism for understanding the basic processes

of life due to the ease of study and the conservation of many pathways. In fact, the best

characterized PAS Kinase pathway, the Ugp1 pathway, was first identified in yeast [49].

One of the proposed networks for the PAS Kinase Ugp1 pathway is indicated in Fig.

3.3. In this pathway there are three proteins that are directly formed from a gene: PSK, Ugp1,

and Glc7; the others are activated forms or complexes involving these three proteins. The

species of interest in the pathway are Ugp1, Ugp1* and the Ugp1*Glc7. The asterisk implies

an activated form of the protein, e.g Upg1* is the activated form of Ugp1 that is produced

when PAS Kinase modifies the Ugp1 protein [49]. Once Ugp1 is activated, it partitions the

use of cellular glucose towards structural components at the expense of storage carbohydrates

[56]. The last species, Ugp1*Glc7, is theoretical and may be formed by a direct interaction

between Ugp1* and Glc7 [49]. It is hypothesized that Ugp1* is deactivated by this process,

however this needs to be verified. Other key network players include the Snf1 protein, which

is required for the activation of PAS Kinase in response to available nutrients [26].

As shown, the current theoretical network involves ten species, with the majority of

the pathway verified. It is not easy to directly perturb each of the three nodes of interest

since PSK a↵ects two of the observed nodes however, it is possible to create experiments that

directly a↵ect two of the species. These experiments consist of turning on or o↵ a specified

gene by modifying the yeast cell or its environment. This is commonly done through the use

of a plasmid, a small circular piece of DNA inserted into the yeast cell that expresses the

protein in response to external stimulus (such as the addition of a particular chemical to

the growth media). The experiments for the PAS Kinase network include manipulation of

the genes Glc7, Ugp1, and PSK. The plasmids with PSK will directly a↵ect two observed
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H1
SNF1

PSK PSK*

H2

PSK*Ugp1

Ugp1*

Ugp1*Glc7

Ugp1

Glc7

Transcription
product

Transcription
product

Measured species Hidden species PutativeKnown

Figure 3.3: PAS Kinase Pathway with H1 and H2 representing networks of unobserved nodes

nodes: Ugp1* and Ugp1. However, this will be done in an equal amount; it will increase the

activated form of Ugp1* while decreasing the inactive form, Ugp1. The experimental setup is

shown below in Fig. 3.4.

Ugp1

Ugp1*

Ugp1*Glc7

pGDP-PSK

pGDP-Glc7

pGDP-Ugp1

Control Input Observed Nodes RepressionInteraction

1

2

3

Figure 3.4: Experimental setup for PAS Kinase Pathway

As expected, the exact mechanisms by which phosphorylation and dephosphorylation

occur are hidden in this formulation. As indicated earlier, previous formulation required
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a direct perturbation for each observed node in any given network. However, methods or

experimental conditions that independently perturb observed nodes in biological networks

are usually not feasible. This becomes even more di�cult to do when biological networks

have several observed nodes; in many cases it is even impossible to independently perturb all

the observed nodes. However, with the extensions indicated in Section 3.3, reconstruction is

still possible despite multiple perturbations of observed nodes in a given experiment. This is

demonstrated for the Pas Kinase pathway as indicated in Fig. 3.4

3.4.1 Reconstruction for PAS Kinase Pathway

We can define Q, P , and G for the pathway as follows:

G
PAS

=

266664
G1 G2 G3

G4 G5 G6

G7 G8 G9

377775 , Q
PAS

=

266664
0 Q1 Q2

Q3 0 Q4

Q5 Q6 0

377775 , P
PAS

=

266664
P1 P2 P3

P4 P5 P6

P7 P8 P9

377775 (3.13)

However, from the experimental design indicated in Fig. 3.4, we know the true representation

of the control matrix P is as follows:

P
PAS

=

266664
�P

PSK

P
Ugp1 0

P
PSK

0 0

0 0 P
Glc7

377775
Where P

PSK

= P1, PUgp1 = P2, and P
Glc7 = P9. This true representation of P serves as the

prior knowledge for this system. Given L~x = ~b such that:
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266666666666666666666664

I

G4 G7 0 0 0 0

G5 G8 0 0 0 0

G6 G9 0 0 0 0

0 0 G1 G7 0 0

0 0 G2 G8 0 0

0 0 G3 G9 0 0

0 0 0 0 G1 G4

0 0 0 0 G2 G5

0 0 0 0 G3 G6

377777777777777777777775

⇥

266666666666666664

P1

P2

...

P9

Q1

...

Q6

377777777777777775
=

26666664
G1

G2

...

G9

37777775

This system has 15 unknowns and 9 equations, so it is easy to see that no unique solution

exists as is. However, taking into account a priori information given the true structure of P ,

we can decompose ~x into T~z as follows:

T =

2666666666666666666666666666666666666666664

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

�1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

3777777777777777777777777777777777777777775

and ~z =

266666666666664

P1

P2

P9

Q1

...

Q6

377777777777775

70



www.manaraa.com

The total number of variables in ~z is 9, and T is full column rank. In this case, k = pm,

given M~z = ~b (M = LT ), and since M is square and full rank, (M)�1 exists. Therefore,

~z = (M)�1~b, hence reconstruction is possible, and the signal structure of the system can be

uniquely identified from the overall structure of Q

3.5 Conclusion

This paper extends the identifiability conditions required for the reconstruction of the signal

structure of an LTI system. The notion of the DSF (Q,P ), of system was introduced in [24]

and the required conditions for reconstruction were also indicated. From previous work, it

was shown that if no other information is known about the system, the DSF is identifiable if

and only if P is diagonal.

This work shows the necessary and su�cient identifiability conditions for the recon-

struction of the DSF given a system’s TF matrix G. These results are applicable to the

network reconstruction problem even in the cases when the control matrix P is not diagonal.

This extension is significant because it identifies when systems that do not necessarily have

independent perturbation of measured states are reconstructible.

3.6 Appendix: Existence of Non-Target Specific Systems

Consider the following transfer function:

G(s) =

264 �(s+1)
(s+3)(s+5)

�2
(s+5)

�(s+1)
(s+2)(s+5)

�(s+1)
(s+2)(s+5)

375
If we want to determine the corresponding dynamical structure function, we need a priori

information about the system. Let’s assume that the system has diagonal P (i.e. the system is

target specific), applying the process described in Example 8, we get the dynamical structure
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function:

Q =

264 0 2s+4
s+1

s+3
s+2 0

375 , P =

264 1
s+3 0

0 1
s+2

375
Note that by the definition of the dynamical structure function, Q can not be strictly proper

in the sense defined here. Therefore, the assumption that P is diagonal is an incorrect

one, there is no dynamical structure function associated with diagonal P for the transfer

function given. That means there exist systems that cannot be realized with diagonal P ,

which motivates the results of this chapter. Note that there are a set of dynamical structure

functions associated with a transfer function, this example shows that some systems have

sets with no diagonal P .
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Chapter 4

Network Semantics of Dynamical Systems

(Published at CDC 2015)

Abstract

Dynamical systems enjoy a rich variety of mathematical representations, from intercon-

nections of convolution operators or rational functions of a complex variable to systems

of (possibly stochastic) di↵erential or di↵erential algebraic equations. Although many of

these representations can describe the same behavior, i.e. represent the same constraints

on manifest variables, each one characterizes a di↵erent notion of system structure. This

paper details the di↵erences between the notions of system structure that arise naturally

from common system representations, highlighting distinctions between the interconnection

of subystems, or subsystem structure, and the open-loop causal dependencies among manifest

signals, or signal structure. We detail many of the subtleties related to signal structures by

extending the definition of the dynamical structure function to the general LTI setting.

73



www.manaraa.com

4.1 Introduction

Dynamics and structure are two of the most important properties of a dynamical system.

Nevertheless, while a system’s dynamics describe its behavior, that is, how it constrains

allowed combinations of measured, or manifest variables, the notion of structure in a system

is a property of its representation. Since a variety of representations can describe the same

system as specified by a fixed behavior (e.g. the transfer function matrix of a linear time

invariant system as well as any of its state realizations), every system can be associated with

a variety of internal structures.

In this work structure refers to a directed graph, characterized by a set of nodes or

vertices, V , and a set of edges, E, where each edge can be identified with an ordered pair of

nodes from V . We may associate both nodes and edges with particular labels, giving the

graph its meaning, or semantics. The fact, then, that a system may be characterized by

multiple structures, each with a distinct interpretation, indicates the existence of a variety of

graphs that reveal di↵erent insights about the underlying system. This presence of multiple

structures associated with any dynamical system raises significant questions about any

structural analyses performed on such systems. For example, which type of structure does a

network identification algorithm discover, or which type of structure should characterize the

design constraints in a distributed or networked control problem? Using the wrong type of

structure for di↵erent problems can lead to misleading–and even incorrect–results.

4.1.1 Motivating Example

To make these ideas precise, consider the feedback interconnection of two subsystems, G1

and G2, as shown in Figure 4.1a, and suppose the dynamics of these subsystems are specified

by the following transfer functions:

G1 = 1
(s+1)(s+2) , G2 = 1

(s+3)(s+4) . (4.1)
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(a) Subsystem structure is a graph with nodes
labeled as systems and edges labeled as sig-
nals, typically drawn as a block diagram. It
reveals a decomposition of the closed-loop sys-
tem into an interconnection of subsystems.

(b) Signal structure is a graph with nodes
labeled as signals and edges labeled as sys-
tems, typically drawn as a signal-flow graph.
It reveals the open-loop causal dependencies
among manifest variables.

Figure 4.1: Two structural views of the same system. Semantic di↵erences in these views
emerge from the fact that subsystems in (a) have internal, hidden states that are necessarily
distinct from those of other subsystems, while edge-systems in (b) may (or may not) share
hidden state.

Interconnecting these subsystems yields the closed-loop system, G
CL

, given by:

264 Y1

Y2

375 =

264 G1
1�G1G2

G1G2
1�G1G2

G2G1
1�G1G2

G2
1�G1G2

375
264 U1

U2

375 (4.2)

where Y1(s) indicates the Laplace transform of y1(t) (similarly for other signals), and the

explicit s-dependence is suppressed wherever it should be obvious. Figure 4.1a illustrates

the subsystem structure of G
CL

, or the interconnection pattern of subsystems generating the

dynamics seen externally as G
CL

.
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Figure 4.1b illustrates a di↵erent decomposition of G
CL

, characterized by the following

relationships among the manifest signals:

264 Y1

Y2

375 =

264 0 G1

G2 0

375
264 Y1

Y2

375+

264 G1 0

0 G2

375
264 U1

U2

375 (4.3)

Note that this characterization defines the graphical structure shown in Figure 4.1b and is

consistent with G
CL

, since Equation (4.3) implies:

264 Y1

Y2

375 =

0B@I �

264 0 G1

G2 0

375
1CA

�1 264 G1 0

0 G2

375
264 U1

U2

375

=

264 G1
1�G1G2

G1G2
1�G1G2

G2G1
1�G1G2

G2
1�G1G2

375
264 U1

U2

375 .

(4.4)

The structural decomposition of G
CL

in Figure 4.1b is called the signal structure, since it

reveals the (open-loop) dependencies among manifest signals (in contrast to the closed-loop

dependencies among manifest signals, which are specified by the entries of G
CL

itself). These

open-loop dependencies characterize a factorization of the closed-loop dependencies encoded

in the transfer function, G
CL

, as seen in Equation (4.4). Note that considering nodes (signals)

or edges (systems) in the time or frequency domain makes no di↵erence to the analysis, and

these labels may thus be interchangeable (Y1 for y1, etc.) in the signal structures of LTI

systems (likewise for subsystem structures).

While the structural information in Figures 4.1a and 4.1b may appear redundant, the

subsystem and signal structures represent very di↵erent sets of possible realizations of G
CL

.

The meaning, or semantics, of each type of structure derive from these sets of underlying

realizations that each structure allows and forbids.
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So, for example, knowing the subsystem structure of G
CL

, as depicted in Figure 4.1a

and Equation (4.1), eliminates all realizations that are not fourth order, since both G1 and

G2 are second order and, by convention, transfer functions are realized minimally. Moreover,

this set of fourth order realizations allowed by the subsystem structure can be completely

characterized by:

264 ẋ1

ẋ2

375 =

264 A1 B1C2

B2C1 A2

375
264 x1

x2

375+

264 B1 0

0 B2

375
264 u1

u2

375
264 y1

y2

375 =

264 C1 0

0 C2

375
264 x1

x2

375
(4.5)

where x1, x2 2 R2, and (A1, B1, C1) and (A2, B2, C2) are any minimal realization of G1 and

G2, respectively.

The signal structure in Figure 4.1b and Equations (4.1) and (4.3), on the other hand,

is not as restrictive as the subsystem structure, and thus it is weaker, or structurally less

informative than the subsystem structure. That is to say, every realization admissible with

respect to the subsystem structure, characterized by Equation (4.5), is also allowed by the

signal structure–but there are many others as well. For example, the signal structure also

admits minimal realizations that do not decompose into two distinct subsystems as shown in

Figure 4.1a, such as (A
CL

, B
CL

, C
CL

) given by

266666664

�1 0 1 0

1 �3 0 0

0 �1 �2 1

1 2 0 �4

377777775
,

266666664

0 0

0 1

1 0

0 1

377777775
,

264 1 0 0 0

0 �1 0 1

375 (4.6)

77



www.manaraa.com

as well as non-minimal realizations, such as (A
CL

, B
CL

, C
CL

) given below, found by misin-

terpreting the signal structure in Figure 4.1b as the interconnection of distinct subsystems:

2666666666666666666664

�1 1 0 0 0 0 0 0

0 �2 0 0 0 0 0 0

0 0 �1 1 0 0 0 0

0 0 0 �2 1 0 1 0

0 0 0 0 �3 1 0 0

1 0 1 0 0 �4 0 0

0 0 0 0 0 0 �3 1

0 0 0 0 0 0 0 �4

3777777777777777777775

,

2666666666666666666664

0 0

1 0

0 0

0 0

0 0

0 0

0 0

0 1

3777777777777777777775

,

2666666666666666666664

1 0

0 0

1 0

0 0

0 1

0 0

0 1

0 0

3777777777777777777775

0

(4.7)

Each of these have the same signal structure, as shown in Figure 4.1b, but they do not share

the subsystem structure in Figure 4.1a. Section 4.3.2 details how to determine the signal

structure from a state realization.

The reason for these di↵erences in network semantics is that subsystem structure

communicates, by convention, the critical feature that states internal to one subsystem are

not employed by other subsystems. This state-partitioning property of the subsystem structure

restricts the set of admissible realizations much more severely than the signal structure, which

remains agnostic as to whether edge-systems share hidden state or not. These semantic

di↵erences suggest, for example, that learning signal structure from data often requires much

less a priori information about a system than learning subsystem structure would, since, for

example, learning subsystem structure demands the identification of a partition of all system

states, including hidden states that are not measured directly. Also, misinterpreting signal

structure as subsystem structure can result in technical di�culties for both identification

and control since it may lead one to believe that the underlying realization is much higher

order than it really is. Consider, for example, Figure 4.1b, interpreting each edge-system as a

distinct subsystem, leading to necessarily eighth order realizations (a second order subsystem
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for each edge-system), as in Equation (4.7). Properly interpreting the signal structure would

still admit these eighth order realizations for consideration, but it would also admit all the

other realizations discussed above, including all those characterized by Equation (4.5).

The next section explores related works, detailing how di↵erent structural analyses

in the literature employ di↵erent notions of structure. The rest of the paper then focuses

on signal structure, arguably the most unfamiliar structural form, providing a detailed

description of its properties and relationships to other notions of structure.

4.2 Background and Related Work

Exploring and exploiting system structure is not new, but it continues to be one of the

most relevant and exciting topics in systems theory today. Multiple conferences, meetings,

workshops, seminars, journals, and other venues focus on cooperative control, multi-agent

systems, networked control, network identification, inference over networks, distributed

computation, and network science–all of which invite various forms of structural analyses

that rely, at some point, on a particular notion of “network” characterizing the structure of a

system.

Although there is a rich diversity of contexts and applications for this kind of thinking

about structure, we propose that much of the work can be categorized by their use of

four distinct notions of system structure. In this section we look at four key structural

representations that span the spectrum of informativity of the structure of a system: a

system’s external or manifest structure, the interconnection of subsystems or subsystem

structure, the open-loop causal dependencies among manifest variables or signal structure,

and the underlying realization or complete computational structure of a system. Although

no attempt is made to comprehensively categorize all work dealing with structure, we do

demonstrate a number of sources working with each distinct notion of structure.
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4.2.1 Manifest Structure

The weakest notion of structure is characterized by a system’s external behavior. For single-

input single-output systems, this behavioral description contains no structural information

about the system and simply specifies its dynamics. Nevertheless, for multi-input multi-

output systems, the manifest structure reflects some structural information about the internal

closed-loop behavior of the system, where “closed-loop” in this context means the net a↵ect

of internal components interacting to create the observed external dynamic behavior. Not

all systems are best described in an input-output framework [41], however, and manifest

structure is completely consistent with external observations of how the system constrains

dependencies among manifest variables. The key feature of this type of structure is that it

describes the net e↵ect of manifest variables on each other.

Historically a rich conversation and literature has emerged exploring the meaning of

how a manifest variable may e↵ect another [20, 39, 40]. Correlation, mutual information,

and similar notions have provided rigorous ways to think about these dependencies among

manifest variables [19, 53, 61]. Causal dependencies, largely abandoned by work in statistics,

have regained momentum through the development of inference methods for Bayesian graphi-

cal models and ongoing mechanistic modeling in engineering, physics, and other scientific

disciplines. Regardless of how “e↵ect” is measured, however, the important distinction we

want to make here is the representation of a system’s closed-loop or net e↵ect among manifest

variables.

This type of structural description has a long and distinguished relationship with

systems and control theory. Hierarchical, decentralized, and distributed control methods

typically characterized these constraints for LTI systems through the sparsity pattern of

a transfer function (for frequency domain representations) or convolution model (for time

domain representations) [54]. Even recent work continue to use this notion of structure

to formulate distributed control problems and subsequent solutions [34, 47, 48, 50, 67].

Nevertheless, researchers have also noted limitations of this structural representation, citing
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its inability to adequately describe internal loops and other intricacies of an underlying

realization [9, 44, 51, 59]. Clearly other, more detailed representations of structure are

necessary for many problems. Nevertheless, here we define manifest structure as follows:

Definition 7. The manifest structure, M, of a system, S, is a weighted directed graph

with vertex set V (M) and an edge set E(M) such that:

• V (M) = {v1, ..., vp}, each representing a manifest signal of the system, and

• E(M) has an edge from v
i

to v
k

weighted by the net dynamics relating v
k

to v
i

,

where v 2 Rp+m, are manifest variables. If these manifest variables partition into inputs and

outputs, then we expect edges from u
i

, i = 1, ..,m to y
k

, k = 1, ..., p, each labeled with the

corresponding net dynamic relationship; for LTI systems these may be the entries of the

p⇥m transfer function matrix.

4.2.2 Complete Computational Structure

On the other end of the spectrum, the complete computational structure is a specific

realization of a system that completely specifies all of its relevant structural and dynamic

information. Like a blueprint for building a particular instantiation of the system, each

complete computational structure uniquely specifies every other structural representation of

the system. Thus, every complete computational structure will generate a unique manifest

structure, but each manifest structure will be consistent with an entire set of complete

computational structures, or computational realizations.

It is tempting and somewhat useful to associate the complete computational structure

with a state realization of a dynamic system. Certainly a state realization uniquely defines a

system’s manifest structure, and every manifest structure has a variety of state realizations to

choose from. Nevertheless, sometimes standard state realizations are not su�cient to describe

a system’s subsystem structure, and certain classes of di↵erential algebraic equations become

the desired model class characterizing the complete computational structure. In any event,
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given a particular state realization:

ẋ = f(x, u, ),

y = g(x, u, )
(4.8)

with state variables x 2 Rn, controlled inputs u 2 Rm, uncontrolled inputs  2 Rl, and

measured outputs y 2 Rp, the complete computational structure is a graph characterized as

follows:

Definition 8. The complete computational structure, C, of a system, S, is a weighted

directed graph with vertex set V (C) and an edge set E(C) such that:

• V (C) = {u1, ..., um

, 1, ..., l

, x1, ..., xn

, y1, ..., yp}, each representing signals of the sys-

tem, and

• E(C) has an edge from u
i

,  
j

, y
k

, or x
v

to y
w

or x
z

weighted by the relevant dependencies

of y
w

or x
z

on u
i

,  
j

, y
k

, or x
v

, respectively.

Note that the set of elements in  can a↵ect x’s and y’s independently, this allows for

a model of both process noise and measurement noise.

There are many subtle technicalities associated with specifying either a state realiza-

tion or an associated complete computational structure of a system, generally dealing with

the existence and uniqueness of solutions to the resulting equations. Nevertheless, character-

izing the set of computational realizations of a specific dynamic system helps quantify the

information cost for recovering structural information from data, interpreting the meaning of

partial structure representations, and understanding equivalences between di↵erent system

representations.

In fact, many network identification algorithms are formulated in terms of recovering a

state realization from input-output data [21]. In [38] it is shown that one must essentially have

full state measurements (or equivalent information) to recover a particular state realization

of an LTI system from data, and [58] uses this to reconstruct biochemical reaction networks.
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Others attempt to circumvent the need for full state measurements through other assumptions,

such as parsimonious state interactions, [13, 22, 66], although other work criticises these

assumptions for biological systems, [68]. In the end, identifying the complete computational

structure from data is di�cult and generally prohibitively expensive, leading to heuristic

searches for realizations that hopefully correspond favorably to the one that generates the

data used for identification, [12].

State representations have long been the work horse for a number of computational so-

lutions to important problems in identification and control. Recent work includes explorations

of sparse measurement and actuation policies in network control schemes. For example, in

[43] the authors develop an e�cient algorithm for sensor placement to detect and isolate any

possible link failure using a small number of sensors.

4.2.3 Subsystem Structure

The interconnection of subsystems is the typical notion of structure used for cooperative

control and multi-agent systems [33, 37, 46], as well as a variety of other areas [8].

The key property of subsystem structure that gives it its meaning is the fact that

states internal to one subsystem are not employed by other subsystems. This implies that

the subsystem structure partitions the state of the interconnected system, and searches for

the correct subsystem structure for an unknown interconnected system involve a search over

possible partitions, which can be computationally intractable. On the other hand, knowing

the correct subsystem structure of a system conveys a lot of information about the underlying

complete computational structure. Here we define the subsystem structure as follows:

Definition 9. The subsystem structure, R, of a system, S, is a weighted directed graph

with vertex set V (R) and an edge set E(R) such that:

• V (R) = {u1, ..., um

, 1, ..., l

, S1, ..., Sq

, y1, ..., yp}, each representing a manifest signal,

u,  and y, or subsystem, S, of the system, and

• E(R) has an edge from
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– u
i

or  
j

to S
k

if S
k

is dependent on u
i

or  
j

, respectively,

– S
v

to S
w

if S
w

is dependent on S
v

,

– S
z

to y
a

if y
a

is dependent on S
z

.

– Each edge is labeled with the associated signal variable.

4.2.4 Signal Structure

The signal structure is a partial structure representation of a system that characterizes the

open-loop causal dependencies among manifest variables. That is to say, it describes the

dynamics along paths in the complete computational structure from one manifest variable

to another, possibly transversing hidden states. For LTI systems, the signal structure is

consistent with a left co-prime factorization [51] of the transfer function matrix, and various

system representations generate a signal structure, including the dynamical structure function

[24] and linear dynamical graphs [36].

A variety of researchers working on network identification adopt a formulation that

leads to identifying the signal structure of a system [7, 16, 27, 36, 58, 65, 73], although

sometimes it is not clear in the work whether the authors distinguish the semantic di↵erences

between signal and subsystem structure.

The key nuance about signal structure that distinguishes its semantics from subsystem

structure is the fact that component systems, or “edge systems”, do not need to necessarily

partition system state; edge systems may “share” hidden state. That is to say, the set

of underlying computational realizations consistent with a particular signal structure is

very di↵erent from the set of realizations that would treat each edge system as a distinct,

independent subsystem.

In [74], the authors link dynamical structure functions to other signal structure

techniques utilizing Granger causality. One such technique uses a representation known as

the directed information graph, [42], which linked networks of stochastic processes to Granger

causality. Another inference technique, developed in [36], uses linear dynamical graphs, a
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signal structure representation based on Granger causality, that is similar to the dynamical

structure function.

Aside from network inference, signal structure has also been useful in the development

of a procedure for designing a stabilizing decentralized controller, [44]. In other work, [17, 45],

the signal structure was used to model the attack surface of a system to single and multiple

link attacks. The signal structure is defined as follows:

Definition 10. The signal structure, W, of a system, S, is a weighted directed graph with

vertex set V (W) and an edge set E(W) such that:

• V (C) = {u1, ..., um

, 1, ..., l

, y1, ..., yp}, each representing a manifest signal of the sys-

tem, and

• E(C) has an edge from u
i

,  
j

, y
k

, to y
v

if y
v

is dependent on u
i

,  
j

, y
k

, respectively.

Each edge of the signal structure is weighted with a dynamic operator characterizing

the dynamics between the associated variables if all other manifest variables are set to zero.

Details about these notions are described in the next section.

4.3 Partial Structure Representations

In this section, we focus on detailing the mathematical descriptions of two partial structure

representations of the system, the subsystem structure and the signal structure, since both the

transfer function (manifest structure) and state space representations (complete computational

structure) of systems are well-studied in the existing literature.

4.3.1 Subsystem Structure

Definition 11. The linear subsystem structure dynamics is for the ith subsystem is given

by

ẋ
i

= A
i

x
i

+
P

n

j=1 Dij

x
j

+B
i

u
i

(4.9)
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where i = 1, ..., q, j 6= i, x
k

2 Rn

k , u
k

2 Rm

k , and A
i

, D
ij

, and B
i

are of appropriate

dimension.

Note that subsystems only interact with other subsystems as established through the

subsystem structure. However, certain problems might couple the subsystems through their

objectives.

Moreover, an implicit part of the definition of subsystem structure is that for a state

r 2 x
i

=) r 62 x
j

for any j 6= i. This means that states are not shared between subsystems

and, more importantly, there are no shared hidden states in the subsystem structure. This

characteristic that distinguishes it from the signal structure of a system.

4.3.2 Signal Structure

The signal structure is characterized by an equation of the form:

Y = QY + PU. (4.10)

Although a number of researchers develop system representations in this form, we will use the

dynamical structure function as a vehicle for understanding the properties of this structural

representation.

The dynamical structure function of a system was originally defined in [24]. This work

seeks to make three critical extensions to the original definition, given a state space of the

form

ẋ = Ax+Bu+ F 

y = Cx+Du+H 
(4.11)

where A,B,C,D, F and H are matrices of appropriate dimension:

1. to include noisy perturbations,  , which allows for the separation of perturbations

inflicted by an external source, like an attacker or intrinsic noise, from controlled inputs

by the user,
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2. to allow for causal definitions of systems, which allows for stochastic processes to be

modelled, and

3. to define a transformation of the system that is invariant to state permutations, since

the dynamical structure function should not change if the states are simply renumbered.

Definition 12. Consider a subsystem structure where each subsystem, S
i

, has a state space

representation of the form given in (4.11). The interconnections between structures are causal.

The procedure for calculating the causal dynamical structure function is as follows:

1. For each subsystem, use the follows steps to determine the strictly causal dynamical

structure function for the ith subsystem:

(a) Let p be the rank of C, and assume without loss of generality that the outputs

y = [y01 y02]
0, y1 2 Rp and y2 2 R(l�p), are ordered so the first p rows of C are

linearly independent, i.e.

C =

264 C1

C2

375
with C1 2 Rp⇥n being full row rank. The dynamical structure function of the

subsystem of the form (4.11) with respect to y1 is then given by a pair of (l ⇥ p)

and (l ⇥m) real rational matrix functions, (Q̂(s), P̂ (s)), defined over the Laplace

variable, s 2 C, and constructed by the following procedure:

(b) Create the (n⇥ n) state transformation:

T =


C 0

1 E1

�0
, (4.12)

where E1 2 Rn⇥(n�p) is any basis of the null space of C1, with

T�1 =


R1 E1

�
, (4.13)

where R1 = C 0
1(C1C 0

1)
�1.
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(c) Change basis such that z = Tx, yielding Â = TAT�1, B̂ = TB, Ĉ = CT�1,

D̂ = D, F̂ = TF , and Ĥ = H, and partitioned commensurate with the block

partitioning of T and T�1 to give

264 ż1

ż2

375 =

264 Â11 Â12

Â21 Â22

375
264 z1

z2

375+

264 B̂1

B̂2

375 u+

264 F̂1

F̂2

375 
264 y1

y2

375 =

264 I 0

Ĉ21 0

375
264 z1

z2

375+

264 D̂1

D̂2

375 u+

264 Ĥ1

Ĥ2

375 
(4.14)

Note that while it is easily seen that C1R1 = I and C1E1 = 0, but the fact that

C2E1 = 0 may demand some reflection. The reason this is true is because every

row of C2 is in the row space of C1. If it were not so, then either the rank of C

would be greater than p or C1 would not be composed of p linearly independent

rows. Being in the row space of C1, each row in C2 is thus also orthogonal to every

vector in E1, which spans the orthogonal complement of the row space of C1.

(d) Assume zero initial conditions, take Laplace transforms, and solve for Z2, yielding

sZ1 =
h
Â11 + Â12(sI � Â22)�1Â21

i
Z1 +

h
B̂1 + Â12(sI � Â22)�1B̂2

i
U+h

F̂1 + Â12(sI � Â22)�1F̂2

i
 

264 Y1

Y2

375 =

264 I 0

Ĉ21 0

375
264 Z1

Z2

375+

264 D̂1

D̂2

375U +

264 Ĥ1

Ĥ2

375 
(4.15)

where Z, U , Y , and  denote the Laplace transforms of z, u, y, and  respectively.

(e) For notational simplicity, define:

W (s) = Â11 + Â12(sI � Â22)
�1Â21 (4.16)
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V (s) = B̂1 + Â12(sI � Â22)
�1B̂2 (4.17)

L(s) = F̂1 + Â12(sI � Â22)
�1F̂2 (4.18)

and let D
W

(s) = diag(W (s)) be a diagonal matrix function composed of the

diagonal entries of W (s).

(f) Define Q(s) = (sI � D
W

)�1(W � D
W

), P (s) = (sI � D
W

)�1V , and R(s) =

(sI �D
W

)�1L yielding

Z1 = Q(s)Z1 + P (s)U +R(s) 

264 Y1

Y2

375 =

264 I 0

Ĉ21 0

375
264 Z1

Z2

375+

264 D̂1

D̂2

375U +

264 Ĥ1

Ĥ2

375 
(4.19)

(g) Noting from (4.19) that Z1 = Y1 � D̂1U � Ĥ1 , the dynamical structure function

of (4.11) with respect to y1 is then given by:

Q̂(s) =

264 Q(s)

C21

375 ,

P̂ (s) =

264 P (s) + (I �Q(s))D̂1

D̂2 � Ĉ21D̂1

375 ,

R̂(s) =

264 R(s) + (I �Q(s))Ĥ1

Ĥ2 � Ĉ21Ĥ1

375

(4.20)
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which satisfies 264 Y1

Y2

375 = Q̂(s)Y1 + P̂ (s)U + R̂(s) (4.21)

2. Given the dynamical structure functions (Q̂
i

(s), P̂
i

(s), R̂
i

(s)) for each subsystem S
i

,

interconnect them using block diagram algebra to get the dynamical structure function

of the overall system, (Q̃(s), P̃ (s), R̃(s)).

Note that systems of the form

ẋ = Âx+ B̂u

y =


I 0

�
x

(4.22)

generate transformations of the form T = T�1 = I and have y = y1 (y2 is empty), thereby

leading to Q̂ = Q and P̂ = P , reducing to the definition of the dynamical structure function

from [24]. In this way, this definition of the dynamical structure function is a natural

generalization extending the earlier theory.

4.4 Properties of the Extended Dynamical Structure Function

In this section, we detail the properties of the transformation on any state space system

representation to put it in the form (4.14) from which the strictly causal dynamical structure

function is defined. Extending these properties to the causal case is future work.

Lemma 5. (Invariance to a Class of Block Diagonal Transformations) Given a

system (A,B,C,D, F,H) of the form (4.14) with dynamical structure function (Q̂, P̂ , R̂),

then (Q̂, P̂ , R̂) is invariant to block diagonal state transformations; that is, the set of systems

characterized by block diagonal state transformations,

S = {(MAM�1,MB,CM�1, D,MF,H) | M =

264 I
p⇥p

0

0 M22

375},
90



www.manaraa.com

with M22 any invertible matrix of appropriate size, all share the same dynamical structure

function, (Q̂, P̂ , R̂).

Proof. Transforming the given system, z̄ = Mz, yields

264 ˙̄z1

˙̄z2

375 =

264 A11 A12M
�1
22

M22A21 M22A22M
�1
22

375
264 z̄1

z̄2

375+

264 B1

M22B2

375 u+

264 F1

M22F2

375 
264 y1

y2

375 =

264 I 0

C21 0

375
264 z̄1

z̄2

375+

264 D1

D2

375 u+

264 H1

H2

375 
(4.23)

which leads to

W (s) = A11 + A12M
�1
22 (sI �M22A22M

�1
22 )

�1M22A21

= A11 + A12(sI � A22)�1A21,
(4.24)

V (s) = B1 + A12M
�1
22 (sI �M22A22M

�1
22 )

�1M22B2

= B1 + A12(sI � A22)�1B2.
(4.25)

L(s) = F1 + A12M
�1
22 (sI �M22A22M

�1
22 )

�1M22F2

= F1 + A12(SI � A22)�1F2.
(4.26)

Since W (s), V (s), and L(s) are invariant to M22, (Q̂, P̂ , R̂) also remain unchanged with

respect to M22.

Lemma 5 shows that the dynamical structure function is invariant to transformations

on the hidden states provided they only involve other hidden states.

Theorem 7. (Invariance to Basis of the Null Space) Given a system (A,B,C,D, F,H)

as in (4.11), consider two distinct bases of the null space of C, E 6= Ē, with corresponding
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state transformations:

T =

264 C1

E 0

375 , T̄ =

264 C1

Ē 0

375 ,

as in (4.12), and each leading to its corresponding dynamical structure function, (Q̂, P̂ , R̂)

and (Q̄, P̄ , R̄) as in (4.20). Then (Q̂, P̂ , R̂) = (Q̄, P̄ , R̄).

Proof. Let z = Tx and z̄ = T̄ x. Then z̄ = T̄ T�1z:

T̄ T�1 =

264 C1

Ē 0

375
R1 E

�
=

264 I 0

0 Ē 0E

375 (4.27)

where R1 = C 0
1(C1C 0

1)
�1. The block diagonal structure of T̄ T�1 then ensures, by Lemma

5, that the dynamical structure function produced for z̄ is the same as that for z, i.e.

(Q̂, P̂ , R̂) = (Q̄, P̄ , R̄).

Theorem 8. (Invariance to State Permutations) Consider a system as in (4.11) with

state matrices (A,B,C,D, F,H) and dynamical structure function (Q̂, P̂ , R̂). Then (Q̂, P̂ , R̂)

is invariant to state permutations; that is, the set of systems characterized by state permuta-

tions,

S = {(MAM�1,MB,CM�1, D,MF,H) | M is a permutation matrix},

all share the same dynamical structure function, (Q̂, P̂ , R̂), up to a permutation.

Proof. The result follows from the fact that that the state transformation selected in Step 1

of constructing the dynamical structure function transforms each system in the set S to the

same system for Step 2; the resulting dynamical structure function is thus the same, up to

a permutation. To see this, consider the transformation T constructed for the unpermuted
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system, (A,B,C,D, F,H):

T =

264 C1

E 0
1

375 , T�1 =


R1 E1

�
,

and compare with the transformation T
M

constructed for any permuted system, (MAM�1,

MB, CM�1, D, MF, H):

T
M

=

264 C1

E 0
1

375M�1 = TM�1,

T�1
M

= M


R1 E1

�
= MT�1.

Applying each set of transformations to their respective systems yields the same transformed

system, thus producing the same dynamical structure function:

(T
M

MAM�1T�1
M

, T
M

MB,CM�1T�1
M

, D, T
M

MF,H)

= (TAT�1, TB,CT�1, D, TF,H).

These results clearly demonstrate that the dynamical structure function is well defined

for any state realization or interconnection of subsystems characterized by state realizations.

Moreover, the associated signal structure is a meaningful description of the open-loop causal

dependencies among manifest variables, even when these dependencies are not strictly causal.

The semantics of this notion of structure then derives from the set of realizations consistent

with a given dynamical structure function, and they can be quite di↵erent from those

associated with a comparable signal structure, as illustrated in the motivating example in

Section 1.
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4.5 Conclusion

Dynamical systems have a variety of representations, each of which may describe the same

dynamic behavior but communicate di↵erent notions of structure. A typical example for LTI

systems would be a transfer function (or, equivalently, a convolution model), along with an

associated state realization.

Partial structure representations, such as cooperative multiagent models, linear dy-

namical graphs, directed information graphs, and dynamical structure functions, characterize

a subset of realizations consistent with a given input-output model. This subset gives each

notion of structure its meaning, or semantics.

In this paper we categorize structural representations into two main groups, subsystem

and signal structures, depending on whether component systems necessarily isolate internal

state from other component subsystems. We then catalog a number of technical results that

compare and contrast these di↵erent notions of structure.
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Chapter 5

Semantics and Identifiabilty of the Structured Linear Fractional Transformation

In this chapter we present three methods for comparing partial structure representations

(the dynamical structure function and the structured linear fractional transformation) of a

system: order of minimal realizations, sets of network semantics and information cost for

network reconstruction.

5.1 Orders of Minimal Realizations

In order to develop orders of minimal realizations, we first introduce the following concepts:

1. controllability and observability of a state space model,

2. the Kalman decomposition of a state space model,

3. the order of a state space model,

4. the order of minimal realizations, and

5. the relationships among the respective orders of the minimal realizations of system

representations.

Remember that a zero intricacy state space model of a system is a set of equations of the

form:

ẋ = Ax+Bu

y = Cx+Du
(5.1)
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5.1.1 Controllability and Observability of a State Space Model

The observability of a state space model details whether the initial state can be learned from

a given input and output, while the controllability of a state space model describes whether

a control input can be designed to steer the system to the origin from an arbitrary state [30].

Formal definitions of controllability and observability of a state space model are given in

Definitions 13 and 14, respectively.

Definition 13. The pair (A,B) of a state space system of the form (5.1) is controllable if

every state can be transferred to the origin in finite time.

Definition 14. The pair (A,C) of a state space system of the form (5.1) is observable if

every state at time t0 � 0 can be determined from future inputs and outputs u(t) and y(t),

for t 2 [t0, t1].

5.1.2 Kalman Decomposition of a State Space Realization

Given the definitions of observability and controllability, the Kalman decomposition of a state

space model of the form (5.1) is given in Definition 15.

Definition 15. For every state space model of the form (5.1), there exists a similarity

transformation that takes it to the form of a Kalman decomposition, which is:

266666664

ẋ
co

(t)

ẋ
c̄o

(t)

ẋ
cō

(t)

ẋ
c̄ō

(t)

377777775
=

266666664

A
co

A⇥o

0 0

0 A
c̄o

0 0

A
c⇥ A⇥⇥ A

cō

A⇥ō

0 A
c̄⇥ 0 A

c̄ō

377777775

266666664

x
co

(t)

x
c̄o

(t)

x
cō

(t)

x
c̄ō

(t)

377777775
+

266666664

B
co

0

B
cō

0

377777775
u(t)

y =


C

co

C
c̄o

0 0

�
266666664

x
co

(t)

x
c̄o

(t)

x
cō

(t)

x
c̄ō

(t)

377777775
+Du(t)

(5.2)
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where x
c

are the controllable states, x
c̄

are the uncontrollable states, x
o

are the observable

states, and x
ō

are the unobservable states, e.g. x
co

is observable and controllable, while x
c̄ō

is

unobservable and uncontrollable.

5.1.3 Orders of State Space Realizations

The order of a state space realization is detailed in Definition 16.

Definition 16. Given a state space model of the form (5.1), the order of the system is the

number of states in the system, n.

Instances of a system representation such as the transfer function, the structured linear

fractional transformation, or the dynamical structure function are associated with a set of

state space models of various orders. Thus, we introduce the notion of a minimal realization

of a system in Definition 17.

Definition 17. The order of a minimal realization of a state space model with a given

1. transfer function,

2. structured linear fractional transformation, or

3. dynamical structure function

is the smallest number of states, n̂, in an associated state space model that preserves the

structure and dynamics of the original representation.

The order of a minimal realization depends on the representation from which it is being

realized. The names of the orders of each minimal realization are described in Definitions 18,

19, and 20.

Definition 18. The McMillan degree of a system is the order of any minimal realization of

a transfer function G(s).

Definition 19. The structural degree of a system is the order of any minimal realization of

a dynamical structure function (Q(s), P (s)).
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Definition 20. The subsystem degree of a system is the order of any minimal realization of

a structured linear fractional transformation (N,S(s)).

Given the definitions of a minimal realization and the associated names, we now

compare orders of minimal realizations for each system representation.

Order of Minimal Realizations of a Transfer Function

In order to detail the order of a minimal realization of a transfer function, we include several

well known results in Lemmas 6, 7, and 8.

Lemma 6. A state space model of the form (5.1) is controllable if and only if rank(C ) = n,

where

C =


B AB A2B ... An�1B

�
(5.3)

is the controllability matrix of the system and rank(M ) is the number of linearly independent

rows or columns of M .

Lemma 7. A state space model of the form (5.1) is observable if and only if rank(O) = n,

where

O =

266666666664

C

CA

CA2

...

CAn�1

377777777775
(5.4)

is the observability matrix of the system.

Lemmas 6 and 7 are essentially showing that the rank of the controllability and

observability matrices equal the number of controllable and observable states in the system,

respectively.

Lemma 8. The controllability and observability of a system cannot be changed by a state

transformation.
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Proof. Consider a state transformation of the form z(t) = Tx(t) on a system of the form (5.1)

where T is any invertible matrix. The controllability matrix of the transformed system is:

Ĉ =


TB TAT�1TB ... (TAT�1)n�1TB

�

=


TB TAT�1TB ... TAn�1T�1TB

�

=


TB TAB ... TAn�1B

�

= T


B AB ... An�1B

�

= TC

(5.5)

Since T is invertible, rank(Ĉ ) = rank(C ), so the transformed system has the same number

of controllable states as the original system. Similarly, Ô = OT�1 =) rank(Ô) = rank(O),

completing the proof.

Given the preliminary results, the order or degree of a minimal realization of a transfer

function is shown in Lemma 9.

Lemma 9. The McMillan degree of a realization of a transfer function is the number of

states that are both observable and controllable in a system, denoted n
co

.

Proof. Given a system with a Kalman decomposition as given in (5.2), the associated transfer

function is:


C

co

C
c̄o

0 0

�
0BBBBBBB@

266666664

sI � A
co

�A⇥o

0 0

0 sI � A
c̄o

0 0

�A
c⇥ �A⇥⇥ sI � A

cō

�A⇥ō

0 �A
c̄⇥ 0 sI � A

c̄ō

377777775

1CCCCCCCA

�1 266666664

B
co

0

B
cō

0

377777775
+D
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using the Sherman-Morrison-Woodbury formula we get


C

co

C
c̄o

0 0

�
266666664

(sI � A
co

)�1 (sI � A
co

)�1A⇥o

(sI � A
c̄o

)�1 0 0

0 (sI � A
c̄o

)�1 0 0

⇤ ⇤ ⇤ ⇤

0 ⇤ 0 ⇤

377777775

266666664

B
co

0

B
cō

0

377777775
+D

which evaluates to

C
co

(sI � A
co

)�1B
co

+D

The poles of the transfer function are the poles of (sI � A
co

)�1, by Cramer’s rule the

denominator polynomial is det(sI � A
co

), where det(M) is defined as the determinant of a

square matrix M . This polynomial is the characteristic polynomial of A
co

, whose roots are

the eigenvalues of A
co

. This means that the order of any minimal realization of a transfer

function (i.e. the McMilan degree) is equal to the number of observable and controllable

states in the system.

Order of Minimal Realizations of a Dynamical Structure Function

Unlike the transfer function, determining the minimal order of a realization from a given

dynamical structure function, i.e. the structural degree, using notions of observability and

controllability is still an open problem. However, there is enough known about the issue for

it to be useful here, including:

1. The order n
co

of a G minimal realization is a lower bound on the order of a realization

consistent with (Q(s), P (s)) [72].

2. Any minimal realization of the intermediate representation (W (s), V (s)) associated

with a given dynamical structure function (Q(s), P (s)) is observable. [72]

We denote the structural degree as n
dsf

and we know the relationship between the minimal

order of the transfer function and the minimal order of the dynamical structure function is
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n
co

 n
dsf

. This can be written as

McMillan degree  structural degree (5.6)

Order of Minimal Realizations of a Structured Linear Fractional Transformation

In order to compare the degrees of the structured linear fractional transformation and the

dynamical structure function, we must first understand a key idea that distinguishes them:

the notion of shared hidden state. The two partial structure system representations are

di↵erent for many reasons, one of which is because distinct links in the dynamical structure

function can contain the same state, while this is not allowable in the structured linear

fractional transformation of a system. In Example 10, a simple system containing a shared

hidden state is detailed to demonstrate this concept.

Example 10. Consider the following state space model:

266666664

ẋ1(t)

ẋ2(t)

ẋ3(t)

ẋ4(t)

377777775
=

266666664

�1 0 0 0

0 �2 0 1

0 0 �3 1

1 0 0 �4

377777775

266666664

x1(t)

x2(t)

x3(t)

x4(t)

377777775
+

266666664

1 0 0

0 1 0

0 0 1

0 0 0

377777775

266664
u1(t)

u2(t)

u3(t)

377775
266664
y1(t)

y2(t)

y3(t)

377775 =

266664
1 0 0 0

0 1 0 0

0 0 1 0

377775

266666664

x1(t)

x2(t)

x3(t)

x4(t)

377777775

(5.7)

The associated computational structure of (5.7) is shown in Figure 5.1. The associated
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y1

y2

y3

x4

u1

u1

u3

Figure 5.1: Computational structure of the state space model in (5.7). The red nodes
represent the measured states of the system, the blue node represents the hidden nodes of
the system, and the green nodes are external inputs into the system.

dynamical structure function is:

Q̂(s) =

266664
0 0 0

1
s

2+6s+8 0 0

1
s

2+7s+12 0 0

377775 P̂ (s) =

266664
1

s+1 0 0

0 1
s+2 0

0 0 1
s+3

377775 (5.8)

Note that the fourth state in (5.7) appears in both the transfer function Q21(s) and Q31(s)

since it links the first state to the second state and the first state to the third state, as shown

in Figure 5.2.

One final definition we require before detailing the relationship of the subsystem

degrees to the structural and McMillan degrees is to define the subsystem structure as a

graphical dual of the signal structure.

Definition 21. The subsystem structure as a graphical dual of the signal structure is

defined as follows:

1. each v
j

2 V (W ) becomes an element v
j

2 V (S ) for all j,

2. each e
i

2 E(W ) becomes an element S
i

2 V (S ), for i = 1, ..., p2 � p+ pm, and
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y1

y2

y3

u1

u1

u3

Figure 5.2: Signal structure of the dynamical structure function in (5.8). The red nodes are
the measured states in the system and the green nodes are external inputs into the system.

3. each e
i

2 E(W ) becomes two edges e
j

, e
h

2 E(S ), where e
j

is from the same input

or ouput from the signal structure to the subsystem created above and e
h

is from the

subsystem created above to the same output from the signal structure

With the definition of shared hidden state and graphical dual, we are now equipped to

detail the relationships between orders of minimal realizations between the transfer function,

dynamical structure function, and structured linear fractional transformation.

Lemma 10. Given a dynamical structure function, (Q(s), P (s)), with structural degree n
dsf

and the structured linear fractional transformation which is its graphical dual, (N,S(s)), with

subsystem degree, n
sub

, then n
dsf

 n
sub

Proof. The proof can be split into two cases:

1. Case 1: No Shared Hidden States Each non-zero link in the dynamical structure

function, i.e. Q
ij

(s) 6= 0 for i 6= j and P
kl

(s) 6= 0, 8(k, l), corresponds to a subsystem

S
m

(s) in the structured linear fractional transformation. Each link can be realized in the

same manner that the corresponding subsystem is realized and no pole-zero cancellations

can occur in either since the states are all observable. Therefore, n
dsf

= n
sub

.
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2. Case 1: Shared Hidden States Consider a system with h hidden states, where the

ith hidden state is shared in r
i

links in Q(s) and/or P (s), where r1 > 1, 8i. Then,

any minimal realization of the structured linear fractional transformation will have

n
ns

+
P

h

i=1 ri states, where n
ns

are the non-shared hidden states in the system, while

any minimal realization of the dynamical structure function will have n
ns

+
P

h

i=1 1

states. Since r1 > 1, 8i, that means n
dsf

< n
sub

Therefore, for any arbitrary system n
dsf

 n
sub

.

Theorem 9. Consider a dynamical structure function (Q(s), P (s)), with G(s) = (I �

Q(s))�1P (s) and (N,S(s)) the structured linear fractional transformation derived from the

graphical dual of (Q(s), P (s)). Then the following relationship is true for the order of each

minimal realization:

McMillan degree  structural degree  subsystem degree (5.9)

Proof. From Lemma 9 we know that the McMillan degree is equal to the number of states

that are both controllable and observable, n
co

. Equation 5.6 then showed that McMillan

degree  structural degree. Finally, Lemma 10 shows that structural degree  subsystem

degree, which completes the proof.

5.2 Network Semantics

Semantics is a branch of linguistics and logic concerned with meaning [5]. Remembering that

a single instance of a system representation with low structural informativity will be consistent

with a set of instances of a system representation with higher structural informativity, we call

this set the semantics of the instance of the lower structural informativity representation.

Here we define the semantics of an instance of a system representation to be the

set of state space realizations consistent with that instance. Each instance of a transfer
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function, dynamical structure function, and structured linear fractional transformation has

an associated set of state space realizations with consistent dynamics and structure.

The methodology we developed for comparing the semantics of the transfer function,

structured linear fractional transformation, and dynamical structure function is as follows:

1. Given the dynamical structure function (Q̂(s), P̂ (s)) of the form in (2.28) where p = p1,

meaning C is full row rank, and D = 0, calculate the associated transfer function G(s).

2. Determine the structured linear fractional transformation (N,S(s)) that is the graphical

dual of the dynamical structure function (Q̂(s), P̂ (s)).

3. Determine the set of realizations associated with the transfer function, dynamical

structure function, and structured linear fractional transformation.

4. Pad the set of realizations associated with the transfer function, G(s), and the dynamical

structure function, (Q̂(s), P̂ (s)), with additional states to ensure all sets are the same

order and, thus, comparable.

5. Compare the semantics, i.e. the resulting sets of realizations, of each system represen-

tation.

To start, assume we are given an instance of a dynamical structure function (Q̂(s), P̂ (s)).

5.2.1 Step 1: Calculate the Transfer Function

Consider a dynamical structure function of the form (2.27) where p = p1, meaning C is full

row rank, and D = 0, meaning (Q̂(s), P̂ (s)) = (Q(s), P (s)). The associated transfer function

is

G(s) = (I �Q(s))�1P (s)

where (I �Q(s)) is invertible because Q(s) is a strictly proper, hollow matrix.
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5.2.2 Step 2: Structured Linear Fractional Transformation as a Graphical Dual

Consider a state space model of the form:

266664
ẋ1

...

ẋ
n

377775 =

266666664

A1 k12B1C2 ... k1nB1Cn

k21B2C1
. . . . . .

...

...
. . . . . . k(n�1)nBn�1Cn

k
n1Bn

C1 ... k
n(n�1)Bn

C
n�1 A

n

377777775

266664
x1

...

x
n

377775 (5.10)

+

266666664

l11B1 0 ... 0

0
. . . . . .

...

...
. . . . . . 0

0 ... 0 l
nn

B
n

377777775

266664
u1

...

u
n

377775

266664
y1
...

y
n

377775 =

266666664

C1 0 ... 0

0
. . . . . .

...

...
. . . . . . 0

0 ... 0 C
n

377777775

266664
x1

...

x
n

377775
where k

ij

2 {0, 1} is non-zero if there is a connection from the jth to ith subsystem, l
ii

2 {0, 1}

is non-zero if the ith subsystem is a↵ected by an external input, and for each i = 1, ..., q,

we have A
i

2 Rn

i

⇥n

i , B
i

2 Rn

i

⇥1, and C
i

2 R1⇥n

i . We assume that all transfer functions

G
i

(s) = C
i

(sI � A
i

)�1B
i

are single-input single-output (SISO) which is reasonable for a

comparison to the dynamical structure function as a graphical dual, also the state space

representation in (5.10) makes two other assumptions to make it comparable to the dynamical

structure function:

1. K is hollow, meaning that outputs of subsystems don’t directly a↵ect themselves and

2. L is diagonal, meaning each input targets a single subsystem.
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These assumptions are a reasonable starting point for the development of the semantics of

the structured linear fractional transformation and extending the results to structured linear

fractional transformations with less restrictions will be the product of future work.

Given (Q(s), P (s)) of a system, the graphical dual can be created mathematically

taking each non-zero entry of Q(s) and P (s) and setting it as a SISO subsystem G
k

(s) in

S(s). Utilizing the equations

N =

2640 I

L K

375 , S(s) =

266666664

G1(s) 0 ... 0

0
. . . . . .

...

...
. . . . . . 0

0 ... 0 G
n

(s)

377777775
(5.11)

where G
i

(s) = C
i

(sI � A
i

)�1B
i

,

L =

266666664

l11 0 .. 0

0
. . . . . .

...

...
. . . . . . 0

0 ... 0 l
nn

377777775
, K =

266666664

0 k12 ... k1n

k21
. . . . . .

...

...
. . . . . . k(n�1)n

k
n1 ... k

n(n�1) 0

377777775
(5.12)

given the values of l
ii

and k
ij

from (5.10). Then the structure of


L K

�
is determined by

setting L
ij

= 1 if, given (2.28), the input U
j

(s) a↵ects the measured state Y
i

(s), i.e. P
ij

(s) 6= 0,

and K
ij

= 1 if Y
j

(s) a↵ects Y
i

(s), i.e. Q
ij

(s) 6= 0.

5.2.3 Step 3: Determine the Set of Realizations Associated with Each System

Representation

First, we describe the set of realizations associated with the transfer function, a well known

result in the systems theory literature [30]. This, in turn, will then inform the network
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semantics of both the structured linear fractional transformation and the dynamical structure

function.

Network Semantics of a Transfer Function

The semantics of the transfer function, i.e. the set of all realizations associated with the

transfer function, is characterized by any invertible matrix T 2 Rn⇥n, where n is the minimal

order of the transfer function and T represents any change of basis of the state variables x(t).

Given a state space model that is a realization of the transfer function G of the form:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) +Du(t)
(5.13)

The associated transfer function is

G(s) = C(sI � A)�1B +D

Applying the transformation T to the state space system in (5.13) we get:

ż(t) = TAT�1z(t) + TBu(t)

y(t) = CT�1z(t) +Du(t)
(5.14)

The associated transfer function is given by:

Ĝ(s) = CT�1(sI � TAT�1)�1TB +D

= CT�1(sTT�1 � TAT�1)�1TB +D

= CT�1(T (sI � A)T�1)�1TB +D

= CT�1T (sI � A)�1T�1TB +D

= C(sI � A)�1B +D

= G(s)
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Then the set of all realizations specifying the semantics of G(s) is given by (5.14) for any

invertible matrix T .

Network Semantics of a Structured Linear Fractional Transformation

In this section, we detail the set of transformations that maintain the class of structured

linear fractional transformations defined in (5.11).

Lemma 11. Given a state space model of the form (5.10), an invertible transformation T

maintains the structured linear fractional transformation ()

T =

266664
T11 ... T1n

...
. . .

...

T
n1 ... T

nn

377775 , T�1 =

266664
T̂11 ... T̂1n

...
. . .

...

T̂
n1 ... T̂

nn

377775 (5.15)

where

1. (Property A) T
ii

is any invertible matrix for all i and T̂
ii

= T�1
ii

,

2. (Property B) T
ij

B
j

= 0 and C
i

T̂
ij

= 0 for all i, j when i 6= j,

3. (Property C) For each i, j, h where i 6= j or i 6= h or j 6= h, we have
P

n

j=1 Tij

A
j

T̂
jh

= 0

Proof. First, we show necessity by taking a transformation T of the form (5.15) and showing

that each of the Properties A, B, and C must be met to ensure the structured linear fractional

transformation is maintained. Consider a transformation T , where T is any invertible matrix,
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on a state space model of the form given in (5.10), which is:

266664
ẋ1

...

ẋ
n

377775 =

266666664

A1 k12B1C2 ... k1nB1Cn

k21B2C1
. . . . . .

...

...
. . . . . . k(n�1)nBn�1Cn

k
n1Bn

C1 ... k
n(n�1)Bn

C
n�1 A

n

377777775

266664
x1

...

x
n

377775

+

266666664

l11B1 0 ... 0

0
. . . . . .

...

...
. . . . . . 0

0 ... 0 l
nn

B
n

377777775

266664
u1

...

u
n

377775
266664
y1
...

y
n

377775 =

266666664

C1 0 ... 0

0
. . . . . .

...

...
. . . . . . 0

0 ... 0 C
n

377777775

266664
x1

...

x
n

377775

Applying the transformation (5.15) to the B matrix, we get

TB =

266664
T11 ... T1n

...
. . .

...

T
n1 ... T

nn

377775

266666664

l11B1 0 ... 0

0
. . . . . .

...

...
. . . . . . 0

0 ... 0 l
nn

B
n

377777775

=

266664
l11T11B1 ... l

nn

T1nBn

...
. . .

...

l11Tn1B1 ... l
nn

T
nn

B
n

377775

(5.16)

Since TB must remain a block diagonal matrix in order for the structured linear fractional

transformation to be defined, T
ij

B
j

= 0 for all i 6= j.
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Similarly, applying the transformation (5.15) to the C matrix, which gives

CT�1 =

266666664

C1 0 ... 0

0
. . . . . .

...

...
. . . . . . 0

0 ... 0 C
n

377777775

266664
T̂11 ... T̂1n

...
. . .

...

T̂
n1 ... T̂

nn

377775

=

266664
C1T̂11 ... C1T̂1n

...
. . .

...

C
n

T̂
n1 ... C

n

T̂
nn

377775

(5.17)

since CT�1 must remain a block diagonal matrix in order for the structured linear fractional

transformation to be defined, C
i

T̂
ij

= 0 for all i 6= j. Moreover, taking the results from

(5.16) and (5.17) we know that for each T̂
ii

= T�1
ii

in order for the structured linear fractional

transformation to be maintained, meaning each T
ii

is invertible. Thus, we have shown that

Properties A and B must be true in order for the structured linear fractional transformation

to be maintained. The final step is to demonstrate that Property C must be true for the

structured linear fractional transformation to be maintained.

Applying the transformation (5.15) to A yields:

TAT

�1 =

2

66666666664

T11 ... T1n

.

.

.
. . .

.

.

.

Tn1 ... Tnn

3

77777777775

2

66666666666666664

A1 k12B1C2 ... k1nB1Cn

k21B2C1

. . .
. . .

.

.

.

.

.

.
. . .

. . .
k(n�1)nBn�1Cn

kn1BnC1 ... kn(n�1)BnCn�1 An

3

77777777777777775

2

66666666664

T

�1
11 ... T̂1n

.

.

.
. . .

.

.

.

T̂n1 ... T

�1
nn

3

77777777775

=

2

66666666664

T11A1 +
Pn

r=2 kr1T1rBrC1 ... T1nAn +
Pn�1

r=1 krnT1rBrCn

.

.

.
. . .

.

.

.

Tn1A1 +
Pn

r=2 kr1Tr1BrC1 ... TnnAn +
Pn�1

r=1 krnTr1BrCn

3

77777777775

2

66666666664

T

�1
11 ... T̂1n

.

.

.
. . .

.

.

.

T̂n1 ... T

�1
nn

3

77777777775

(5.18)
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Since T
ij

B
j

= 0 for all i 6= j, we have:

TAT

�1 =

2

66666666664

T11A1 ... T1nAn + k1nT11B1Cn

.

.

.
. . .

.

.

.

Tn1A1 + kn1TnnBnC1 ... TnnAn

3

77777777775

2

66666666664

T

�1
11 ... T̂1n

.

.

.
. . .

.

.

.

T̂n1 ... T

�1
nn

3

77777777775

=

2

66666666664

T11A1T
�1
11 +

Pn
r=2 (T1rAr T̂r1 + k1rT11B1Cr T̂r1) ... T11A1T̂1n +

Pn
r=2 (T1rAr T̂rn + k1rT11B1Cr T̂rn)

.

.

.
. . .

.

.

.

TnnAnT̂n1 +
Pn�1

r=1 (TnrAr T̂r1 + knrTnnBnCr T̂r1) ... TnnAnT

�1
nn +

Pn�1
r=1 (TnrAr T̂1r + knrTnnBnCr T̂1r)

3

77777777775

(5.19)

Since C
i

T̂
ji

= 0 for all i 6= j, we have:

TAT

�1 =

2

66666666664

Pn
r=1 (T1rAr T̂r1) ... k1nT11B1CnT

�1
nn +

Pn
r=1 (T1rAr T̂rn)

.

.

.
. . .

.

.

.

kn1TnnBnC1T
�1
11 +

Pn
r=1 (TnrAr T̂r1) ...

Pn
r=1 (TnrAr T̂rn)

3

77777777775

(5.20)

Consider the transformed matrices TB and CT�1. We know that for each i we have

B̂
i

= T
ii

B
i

and Ĉ
i

= C
i

T�1
ii

, which means that in order to maintain the structured linear

fractional transformation, the o↵ diagonal entries of the transformed matrix TAT�1 must

be Â
ij

= T
ii

B
i

C
j

T�1
jj

and the diagonal entries must be Â
ii

= T
ii

A
i

T�1
ii

. This means that for

each i, j, h where i 6= j or i 6= h or j 6= h we have
P

n

j=1 Tij

A
j

T̂
jh

= 0, which means we have

shown necessity of Property C.

Now, in order to show su�ciency we need to show that given a transformation (5.15)

with Properties A, B, and C, that the structured linear fractional transformation is maintained.

Applying a transformation (5.15) with these properties to a state space model of the form

112



www.manaraa.com

(5.10) yields the state space model:

2

66666666664

ż1

.

.

.

żn

3

77777777775

=

2

66666666666666664

T11A1T
�1
11 k12T11B1C2T

�1
22 ... k1nT11B1CnT

�1
nn

k21T22B2C1T
�1
11

. . .
. . .

.

.

.

.

.

.
. . .

. . .
k(n�1)nT(n�1)(n�1)Bn�1CnT

�1
nn

kn1TnnBnC1T
�1
11 ... kn(n�1)TnnBnCn�1T

�1
(n�1)(n�1)

TnnAnT

�1
11

3

77777777777777775

2

66666666664

z1

.

.

.

zn

3

77777777775

+

2

66666666666666664

l11T11B1 0 ... 0

0
. . .

. . .
.
.
.

.

.

.
. . .

. . . 0

0 ... 0 lnnTnnBn

3

77777777777777775

2

66666666664

u1

.

.

.

un

3

77777777775

2

66666666664

y1

.

.

.

yn

3

77777777775

=

2

66666666666666664

C1T
�1
11 0 ... 0

0
. . .

. . .
.
.
.

.

.

.
. . .

. . . 0

0 ... 0 CnT

�1
nn

3

77777777777777775

2

66666666664

z1

.

.

.

zn

3

77777777775

(5.21)

The associated structured linear fractional transformation of (5.21) is given by:

Ŝ(s) =

266666664

Ĝ1(s) 0 ... 0

0
. . . . . .

...

...
. . . . . . 0

0 ... 0 Ĝ
q

(s)

377777775
(5.22)

where

Ĝ
i

(s) = C
i

T�1
ii

(sI � T
ii

A
i

T�1
ii

)�1T
ii

B
i

= C
i

(sI � A
i

)�1B
i

= G
i

(s)

(5.23)

which means Ŝ(s) = S(s) and

N̂ =

2640 I

L̂ K̂

375 (5.24)
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with K̂ = K since the corresponding k values in the entries of the transformed A matrix

do not change and L̂ = L since the transformation does not a↵ect the boolean structure of

inputs that a↵ect the subsystems, which means N̂ = N . Since (Ŝ(s), N̂) = (S(s), N) the

structured linear fractional transformation is maintained, which completes the proof.

Theorem 10. A transformation of the form

T =

266666664

T11 0 ... 0

0
. . . . . .

...

...
. . . . . . 0

0 ... 0 T�1
nn

377777775
(5.25)

is necessary and su�cient for maintaining the structured linear fractional transformation.

Proof. The basic idea of the proof is that any state space model that can be reached by a

transformation of the form

T =

266664
T11 ... T1n

...
. . .

...

T
n1 ... T

nn

377775 , T�1 =

266664
T̂11 ... T̂1n

...
. . .

...

T̂
n1 ... T̂

nn

377775 (5.26)
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with Properties A, B, and C from Lemma 11 can be reached using the transformation in

(5.25). Applying the transformation (5.25) to a state space model of the form (5.10) yields:

2

66666666664

ż1

.

.

.

żn

3

77777777775

=

2

66666666666666664

T11A1T
�1
11 k12T11B1C2T

�1
22 ... k1nT11B1CnT

�1
nn

k21T22B2C1T
�1
11

. . .
. . .

.

.

.

.

.

.
. . .

. . .
k(n�1)nT(n�1)(n�1)Bn�1CnT

�1
nn

kn1TnnBnC1T
�1
11 ... kn(n�1)TnnBnCn�1T

�1
(n�1)(n�1)

TnnAnT

�1
11

3

77777777777777775

2

66666666664

z1

.

.

.

zn

3

77777777775

+

2

66666666666666664

l11T11B1 0 ... 0

0
. . .

. . .
.
.
.

.

.

.
. . .

. . . 0

0 ... 0 lnnTnnBn

3

77777777777777775

2

66666666664

u1

.

.

.

un

3

77777777775

2

66666666664

y1

.

.

.

yn

3

77777777775

=

2

66666666666666664

C1T
�1
11 0 ... 0

0
. . .

. . .
.
.
.

.

.

.
. . .

. . . 0

0 ... 0 CnT

�1
nn

3

77777777777777775

2

66666666664

z1

.

.

.

zn

3

77777777775

(5.27)

which, by Lemma 11, maintains the structured linear fractional transformation. Since (5.27)

is equivalent to the system in (5.21), which can be reached by a transformation of the form

(5.26), the proof is complete.

Network Semantics of a Dynamical Structure Function

When calculating the dynamical structure function from a state space model, there exists

an intermediate representation for W (s) and V (s), as defined in (2.23) and (2.24). In this

section, we detail su�cient conditions for a transformation that maintains W (s) and V (s)

for the case when C is full row rank and D = 0, which is in turn a su�cient condition for a

transformation that maintains a dynamical structure function. Necessary conditions for a

transformation that maintains a dynamical structure function is the subject of future work.

Maintaining W (s) and V (s) when C is Full Row Rank Consider a state space model

of the form (2.20) with p = p1, which means C full row rank, and D = 0, which we denote
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(A,B,C, 0). This uniquely defines a pair of the intermediate representation of the dynamical

structure function (W (s), V (s)) through a transformation T as defined in (2.18). Next,

consider a transformation T̂ on (2.20) that yields a new state space model (Â, B̂, Ĉ, 0) which

in turn uniquely defines a new pair of the intermediate representation of the dynamical

structure function (W̄ (s), V̄ (s)) through a transformation T̄ . We want to show the properties

of T̂ such that

(W (s), V (s)) = (W̄ (s), V̄ (s))

which is a su�cient condition for

(Q(s), P (s)) = (Q̄(s), P̄ (s))

The various relationships between state space realizations given by the transformations T , T̂

and T̄ can be summarized as in Figure 5.3.

(A,B,C, 0)

( !A, !B, I 0⎡
⎣

⎤
⎦, 0)

(Â, B̂, Ĉ, 0)

(A,B, I 0⎡
⎣

⎤
⎦, 0)

T

T̂

T

Figure 5.3: The relationship between the state space representations in Lemma 12.

1. Determining Formulas for (W (s), V (s))
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Consider the state space system

(A,B,C, 0) (5.28)

where C is full row rank. The transformation

T =

264 C

ET

375 (5.29)

on the system, where E is any basis of the null space of C, yields the system

(Ã, B̃, C̃, 0) = (TAT�1, TB,CT�1, 0) (5.30)

where

T�1 =


CT (CCT )�1 E

�
. (5.31)

Applying the transformation (5.29) to (5.28) yields the following equations:

Ã = TAT�1 =

264 C

ET

375A


CT (CCT )�1 E

�

=

264 CACT (CCT )�1 CAE

ETACT (CCT )�1 ETAE

375
(5.32)

B̃ = TB =

264 C

ET

375B

=

264 CB

ETB

375
(5.33)
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C̃ = CT�1 = C


CT (CCT )�1 E

�

=


CCT (CCT )�1 CE

�

=


I 0

�
(5.34)

From (5.32), (5.33), (5.34), and the definition of the intermediate representation of the

dynamical structure function in (2.23) and (2.24) we get

W (s) = Ã11 + Ã12(sI � Ã22)�1Ã21

= CACT (CCT )�1 + CAE(sI � ETAE)�1ETACT (CCT )�1

= CACT (CCT )�1 + CAE(ET (sI � A)E)�1ETACT (CCT )�1

(5.35)

V (s) = B̃1 + Ã12(sI � Ã22)�1B̃2

= CB + CAE(sI � ETAE)�1ETB

= CB + CAE(ET (sI � A)E)�1ETB

(5.36)

2. Deriving Formulas for (W̄ (s), V̄ (s))

Consider an invertible matrix T̂ that transforms the system in (5.28) such that we get

(Â, B̂, Ĉ, 0) = (T̂AT̂�1, T̂B, CT̂�1, 0). (5.37)
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In order to determine the corresponding dynamical structure function, we must apply a

state transformation of the form

T̄ =

264 Ĉ

ÊT

375 =

264CT̂�1

ÊT

375 (5.38)

where Ê is any basis of the null space of CT̂�1. Note that

T̄�1 =


T̂�TCT (CT̂�1T̂�TCT )�1 Ê

�
. (5.39)

Applying the transformation (5.38) to the state space model (5.37), we get the following

equations:

Ā = T̄ ÂT̄�1 = T̄ T̂AT̂�1T̄�1 =

264CT̂�1

ÊT

375 T̂AT̂�1


T̂�TCT (CT̂�1T̂�TCT )�1 Ê

�

=

264 CAT̂�1T̂�TCT (CT̂�1T̂�TCT )�1 CAT̂�1Ê

ÊT T̂AT̂�1T̂�TCT (CT̂�1T̂�TCT )�1 ÊT T̂AT̂�1Ê

375
(5.40)

B̄ = T̄ B̂ = T̄ T̂B =

264CT̂�1

ÊT

375 T̂B

=

264 CB

ÊT T̂B

375
(5.41)
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C̄ = ĈT̄�1 = CT̂�1T̄�1 = CT̂�1


T̂�TCT (CT̂�1T̂�TCT )�1 Ê

�

=


CT̂�1T̂�TCT (CT̂�1T̂�TCT )�1 CT̂�1Ê

�

=


I 0

�
(5.42)

From (5.40), (5.41), (5.42) and the definition of the intermediate representation of the

dynamical structure function in (2.23) and (2.24), we get

W̄ (s) = Ā11 + Ā12(sI � Ā22)�1Ā21

= CAT̂�1T̂�TCT (CT̂�1T̂�TCT )�1+

CAT̂�1Ê(sI � ÊT T̂AT̂�1Ê)�1ÊT T̂AT̂�1T̂�TCT (CT̂�1T̂�TCT )�1

= CAT̂�1T̂�TCT (CT̂�1T̂�TCT )�1+

CAT̂�1Ê(ÊT T̂ (sI � A)T̂�1Ê)�1ÊT T̂AT̂�1T̂�TCT (CT̂�1T̂�TCT )�1

(5.43)

V̄ (s) = B̄1 + Ā12(sI � Ā22)�1B̄2

= CB + CAT̂�1E(sI � ÊT T̂AT̂�1Ê)�1ÊT T̂B

= CB + CAT̂�1E(ÊT T̂ (sI � A)T̂�1Ê)�1ÊT T̂B

(5.44)

Given formulas for (W (s), V (s)) and (W̄ (s), V̄ (s)), Lemma 12 outlines necessary and su�cient

conditions for maintaining this intermediate representation.
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Lemma 12. T̂�1T̂�T = I + Ē =) (W (s), V (s)) = (W̄ (s), V̄ (s)), where Ē = ĒT and

range(Ē) ✓ N (C).

Proof. Note that we assume T̂�1T̂�T = I + Ē, where Ē = ĒT . This is because T̂�1T̂�T is

symmetric, which means I + Ē is symmetric =) Ē = ĒT .

The proof will proceed as follows:

1. Detail the equations (W (s), V (s)) = (W̄ (s), V̄ (s)).

2. Split the two equations W (s) = W̄ (s) and V (s) = V̄ (s) into four equations, two

equations each, based on the dynamic and static parts of each.

3. Analyze the corresponding equations to show su�cient conditions on T̂ that maintain

the dynamical structure function.

First, the comparison of (W (s), V (s)) and (W̄ (s), V̄ (s)) yields

W (s) = W̄ (s) =)

CACT (CCT )�1 + CAE(ET (sI � A)E)�1ETACT (CCT )�1 =

CAT̂�1T̂�TCT (CT̂�1T̂�TCT )�1+

CAT̂�1Ê(ÊT T̂ (sI � A)T̂�1Ê)�1ÊT T̂AT̂�1T̂�TCT (CT̂�1T̂�TCT )�1

(5.45)

V (s) = V̄ (s) =)

CB + CAE(ET (sI � A)E)�1ETB =

CB + CAT̂�1E(ÊT T̂ (sI � A)T̂�1Ê)�1ÊT T̂B

(5.46)

Since each of W (s), V (s), W̄ (s) and V̄ (s) are transfer functions, we can split the

equations (5.45) and (5.46) into their dynamic and static parts to get:

CACT (CCT )�1 = CAT̂�1T̂�TCT (CT̂�1T̂�TCT )�1 (5.47)
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CAE(ET (sI � A)E)�1ETACT (CCT )�1 =

CAT̂�1Ê(ÊT T̂ (sI � A)T̂�1Ê)�1ÊT T̂AT̂�1T̂�TCT (CT̂�1T̂�TCT )�1
(5.48)

CB = CB (5.49)

CAE(ET (sI � A)E)�1ETB = CAT̂�1E(ÊT T̂ (sI � A)T̂�1Ê)�1ÊT T̂B (5.50)

Ignoring equation (5.49), since it does not contain T̂ and doesn’t convey any useful

relationship, we focus instead on equations (5.47), (5.48), and (5.50). We begin by analyzing

equation (5.47). Define R = T̂�1T̂�T to get the equation

CACT (CCT )�1 = CARCT (CRCT )�1 (5.51)

Subtracting CACT (CCT )�1 from both sides yields

CARCT (CRCT )�1 � CACT (CCT )�1 = 0 (5.52)

Then factoring out CA on the left gives us

CA


RCT (CRCT )�1 � CT (CCT )�1

�
= 0 (5.53)

which means

RCT (CRCT )�1 � CT (CCT )�1 = Ẽ, (5.54)

where range(Ẽ) ✓ N (CA). Equation 5.54 can be rewritten as

RCT (CRCT )�1 = CT (CCT )�1 + Ẽ. (5.55)
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Multiplying (5.55) on the left by C gives us

CRCT (CRCT )�1 = CCT (CCT )�1 + CẼ (5.56)

I = I + CẼ (5.57)

CẼ = 0 (5.58)

which means range(Ẽ) ✓ N (C), a fact that will be necessary for defining conditions on T̂

that allow it to maintain the intermediate representation of the dynamical structure function.

The final step to determine conditions on T̂ comes from (5.55) and letting

R = G+H. (5.59)

Determining the values of G and H will give us the conditions on T̂ that maintain the

dynamical structure functions. First, we get the equation

(G+H)CT (C(G+H)CT )�1 = CT (CCT )�1 + Ẽ (5.60)

GCT (C(G+H)CT )�1 +HCT (C(G+H)CT )�1 = CT (CCT )�1 + Ẽ (5.61)

While there are potentially infinite values for G and H, we only care what their sum is in

order to have a value for R, which in turn details conditions for T̂ . Therefore, we only need

to know one possible value for G and H in order to determine their sum, which gives us R.

One possible value for G and H comes by splitting (5.61) into the following two equations:

GCT (C(G+H)CT )�1 = CT (CCT )�1 (5.62)
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HCT (C(G+H)CT )�1 = Ẽ (5.63)

First, we get a value for H from (5.63) by multiplying on the left by C, which gives

us:

CHCT (C(G+H)CT )�1 = 0 (5.64)

CHCT = 0 (5.65)

Thus a su�cient condition is that

range(H) ✓ N (C). (5.66)

Applying the result from (5.66) to (5.62) yields:

GCT (CGCT )�1 = CT (CCT )�1 (5.67)

GCT (CGCT )�1CCT = CT (5.68)

GCT (CGCT )�1CCT � CT = 0 (5.69)

(G� I)CT


(CGCT )�1CCT � I

�
= 0 (5.70)

which means either

range(G� I) ✓ N (C) (5.71)

or

range((CGCT )�1CCT � I) ✓ N (CT ). (5.72)
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Exploring (5.72) further yields:

CT (CGCT )�1CCT � CT = 0 (5.73)

Combining (5.69) and (5.73) we get

GCT (CGCT )�1CCT = CT (CGCT )�1CCT (5.74)

GCT = CT (5.75)

(G� I)CT = 0 (5.76)

Therefore, the condition from (5.72) is equivalent to the condition from (5.71), i.e.

range(G� I) ✓ N (C)

This means

G = I + L (5.77)

where range(L) ✓ N (C). Combining (5.59), (5.66) and (5.77) and remembering that we

defined R = T̂�1T̂�T we get

T̂�1T̂�T = R

= G+H

= I + L+H

= I + Ē

(5.78)

where Ē = L+H =) range(Ē) ✓ N (C).
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Although this is the result we want, we are not done yet, we need to ensure that this

result is consistent with the equations in (5.48) and (5.50). In order to do so, we must first

show that T̂�1Ê and T̂ T Ê are bases of the null space of C. Consider the transformation T̄ T̂ ,

this is a transformation that maps C to


I 0

�
.

T̄ T̂ =

264 Ĉ

ÊT

375 T̂

=

264CT̂�1

ÊT

375 T̂

=

264 C

ÊT T̂

375

(5.79)

From (2.18) we know that (ÊT T̂ )T is a basis for the null space of C. We will define

Ĕ = (ÊT T̂ )T (5.80)

Now, we want to show that T̂�1Ê is a basis of the null space of C and that Ĕ = T̂�1Ê,

i.e. (ÊT T̂ )T = T̂�1Ê. We start by looking at the inverse of T̄ T̂ , which is:

T̂�1T̄�1 = T̂�1


T̂�TCT (CT̂�1T̂�TCT ) Ê

�
=


T̂�1T̂�TCT (CT̂�1T̂�TCT ) T̂�1Ê

� (5.81)

Since we know T̂�1T̂�T = I + Ē, we have

T̂�1T̄�1 =


CT (CCT ) T̂�1Ê

�
(5.82)
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which means that T̂�1Ê is a basis of the null space of C and that Ĕ = T̂�1Ê. Given this,

(5.48) and (5.50) can be rewritten as

CAE(ET (sI � A)E)�1ETACT (CCT )�1 =

CAĔ(ĔT (sI � A)Ĕ)�1ĔTACT (CCT )�1
(5.83)

CAE(ET (sI � A)E)�1ETB = CAĔ(ĔT (sI � A)Ĕ)�1ĔTB (5.84)

Theorem 2 demonstrated that W (s) and V (s) are invariant to basis of the null space

of C, meaning (5.83) and (5.84) are consistent, which completes the proof.

Theorem 11. Consider a system (A,B,C, 0) with C full row rank whose dynamical structure

function is given by (Q(s), P (s)). Then the system (Â, B̂, Ĉ, 0) = (T̂AT̂�1, T̂B, CT̂�1, 0) has

an associated dynamical structure function (Q̄(s), P̄ (s)). Then

T̂�1T̂�T = I + Ē =) (Q(s), P (s)) = (Q̄(s), P̄ (s))

where Ē = ĒT and range(Ē) ✓ N (C).

Proof. If T̂�1T̂�T = I + Ē, where Ē = ĒT range(Ē) ✓ N (C), then (W (s), V (s)) =

(W̄ (s), V̄ (s)) as shown in Lemma 12. By the definition of the dynamical structure function,

W (s) = W̄ (s) =) Q(s) = Q̄(s).

Corollary 2. If T̂ is orthogonal, then (Q(s), P (s)) = (Q̄(s), P̄ (s)).

Proof. From Theorem 11, we know that T̂�1T̂�T = I + Ē =) (Q(s), P (s)) = (Q̄(s), P̄ (s)),

where range(Ē) ✓ N (C) and Ē = ĒT . Since Ē = 0 meets these conditions, we have

T̂�1T̂�T = I =) (Q(s), P (s)) = (Q̄(s), P̄ (s)). By definition, T̂�1T̂�T = I means that T̂ is

orthogonal, which completes the proof.
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Example 11. Consider the following state space system:

ẋ =

266664
�1 0 1

1 �2 0

0 1 �3

377775 x+

266664
1 0 0

0 2 0

0 0 3

377775 u

y =

2641 2 3

2 3 4

375 x

(5.85)

From the definition of the extended dynamical structure function, (2.18) states that

T =

266664
1 2 3

2 3 4

1 �2 1

377775 (5.86)

must be applied this transformation to (5.85) to get the state space model:

ż =

266664
�10.83 6.333 �0.8333

�12.83 7.333 �0.8333

1.5 1 �2.5

377775 z +

266664
1 4 9

2 6 12

1 �4 3

377775 u

y =

2641 0 0

0 1 0

375 z

(5.87)
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with corresponding dynamical structure function

Q(s) =

264 0 6.333s2+32.5s+41.67
s

3+15.83s2+61.67s+70.83

�12.83s2�65.42s�83.33
s

3�2.333s2�31.25s�47.92 0

375

P (s) =

264 s

2+4.167s+4.167
s

3+15.83s2+61.67s+70.83
4s2+23.33s+33.33

s

3+15.83s2+61.67s+70.83
9s2+42.5s+50

s

3+15.83s2+61.67s+70.83

2s2+9.167s+10.42
s

3�2.333s2�31.25s�47.92
6s2+33.33s+45.83

s

3�2.333s2�31.25s�47.92
12s2+57.5s+68.75

s

3�2.333s2�31.25s�47.92

375
(5.88)

Now, one possible transformation that maintains the dynamical structure function

when applied to the original system in (5.85) can be created as follows:

1. Find a vector in the nullspace of C, in this case

266664
1

�2

1

377775

2. Create a symmetric matrix Ē using this vector, such as

266664
1 �2 1

�2 4 �2

1 �2 1

377775

3. Add I to the matrix Ē to get T̂�1T̂�T = R = I + Ē =

266664
2 �2 1

�2 5 �2

1 �2 2

377775

4. One way to get T̂ is to set T̂�1 =
p
R =

266664
1.2743 �0.5486 0.2743

�0.5486 2.0972 �0.5486

0.2743 �0.5486 1.2743

377775

5. Then T̂ =

266664
0.8963 0.2073 �0.1037

0.2073 0.5853 0.2073

�0.1037 0.2073 0.8963

377775
Note that T̂ is symmetric, but not orthogonal.
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Applying this transformation to the original system in (5.85) yields

ẋ =

266664
�0.2624 �1.371 1.634

0.8963 �2 0.1037

�0.6339 2.371 �3.738

377775 x+

266664
0.8963 0.4147 �0.311

0.2073 1.171 0.622

�0.1037 0.4147 2.689

377775 u

y =

2641 2 3

2 3 4

375 x

(5.89)

We need another transformation of the system to ensure C =


I 0

�
. From the definition of

the extended dynamical structure function, we know that this transformation should be of the

form (2.18). For the system in (5.89), this generates the transformation

T̄ =

266664
1 2 3

2 3 4

1 �2 1

377775
Applying the transformation to the system in (5.89) yields the state space system:

˙̄z =

266664
�10.83 6.333 �2.205

�12.83 7.333 �2.205

0.5669 �0.378 �2.5

377775 z̄ +

266664
1 4 9

2 6 12

0.378 �1.512 1.134

377775 u

y =

2641 0 0

0 1 0

375 z̄

(5.90)
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which has a corresponding dynamical structure function

Q̄(s) =

264 0 6.333s2+32.5s+41.67
s

3+15.83s2+61.67s+70.83

�12.83s2�65.42s�83.33
s

3�2.333s2�31.25s�47.92 0

375

P̄ (s) =

264 s

2+4.167s+4.167
s

3+15.83s2+61.67s+70.83
4s2+23.33s+33.33

s

3+15.83s2+61.67s+70.83
9s2+42.5s+50

s

3+15.83s2+61.67s+70.83

2s2+9.167s+10.42
s

3�2.333s2�31.25s�47.92
6s2+33.33s+45.83

s

3�2.333s2�31.25s�47.92
12s2+57.5s+68.75

s

3�2.333s2�31.25s�47.92

375
(5.91)

Therefore, we have (Q(s), P (s)) = (Q̄(s), P̄ (s)) with T̂�1T̂�T = I + Ē, where Ē 2 N (C) and

Ē = ĒT .

5.2.4 Step 4: Pad Realizations with Additional States

Given the transformations that maintain each of the three representations, we are now ready

to discuss how to make their corresponding set of representations comparable by ensuring

they are all the same order. Given the relationships in Theorem 9, this is accomplished

by padding the states of the minimal realizations of the transfer function and dynamical

structure function to match the order of any minimal realization of the structured linear

fractional transformation.

Transfer Function

In Lemma 9 we discussed the fact that the poles of the transfer function come from the

observable and controllable states in a system. That means that the additional states required

must be unobservable and/or uncontrollable, or the transfer function of the system would

change.

Dynamical Structure Function

The type of additional states used to increase the order of the associated set of realizations

depends on whether shared hidden states appear in the system. If no shared hidden states
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occur, then no additional states are required since the minimal state space realizations of

the structured linear fractional transformation and dynamical structure function will be the

same order. However, if there is at least one shared hidden state in the system, then there

are two ways to append states:

1. Add unobservable states, these will not show up in the dynamical structure function, or

2. Copy each shared hidden state into its own state. Each of these will be observable, but

the underlying dynamical structure function does not change.

Figure 5.4 illustrates the process of appending states to the semantics of both the transfer

function and dynamical structure function in order to create a notion of semantics for each

that is comparable to the semantics of the structured linear fractional transformation.

5.2.5 Step 5: Comparison of Networks Semantics

Consider the three transformations that maintain their respective system representations.

1. In Section 5.2.3 we demonstrated that the transfer function of a system is maintained by

any invertible matrix T 2 Rn⇥n. We define the set of all transformations that maintain

the transfer function as �
tf

.

2. Theorem 10 showed that the structured linear fractional transformation is maintained

by any block diagonal, invertible matrix

T̄ =

266666664

T1 0 ... 0

0
. . . . . .

...

...
. . . . . . 0

0 ... 0 T
q

377777775
We define the set of all transformations that maintain the structured linear fractional

transformation as �
sub

.
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Transfer(
Func,on(

Seman,cs(of(
Transfer(Func,on(

Uncontrollable(and/
or(unobservable(

states(

Controllable(and(
observable(states(

(a) The set of realizations associated with each transfer function, i.e. the semantics of the transfer
function, and the allowable states that can be appended without changing the transfer function.

Dynamical(
Structure(
Func,on(

Seman,cs(of(Dynamical(
Structure(Func,on(

Can(be(unobservable(or(
observable((shared(

hidden(state)(

Observable(states(

(b) The set of realizations associated with each dynamical structure function, i.e. the semantics of
the transfer function, and the allowable states that can be appended without changing the dynamical
structure function.

Figure 5.4: Appending states to the ensure comparable semantics.

3. The dynamical structure function can be maintained by any invertible matrix of the

form T̂�1T̂�T = I + Ē where Ē = ĒT and range(Ē) ✓ N (C). We define the set of all

transformations that maintain the dynamical structure function as �
dsf

.
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Note that the transformations discussed here work only for the minimal orders of the

corresponding system representations. Once we have padded states, the transformations

alone do not always maintain the associated representations. The transfer function is always

maintained with an invertible transformation T regardless of the order of the system.

As for the transformations on padded realizations that maintain the dynamical

structure function, there are two possible cases:

1. Padding realizations so that each shared hidden state is copied allows for transformations

that have T̂�1T̂�T = I + Ē where Ē = ĒT and range(Ē) ✓ N (C) where the

transformation is of appropriate dimension.

2. Determining a set of properties associated with transformations that maintain the

dynamical structure function on realizations that are padded with unobservable states

is an open problem. A su�cient condition is for the transformation to be block diagonal

with two blocks: one block for the original states, T1, has the properties already

described for maintaining the dynamical structure function and a second block for the

padded states, T2, which must be invertible.

Theorem 12. Given �
tf

, �
sub

, and �
dsf

, the following relationships hold when the orders of

the realizations are the same:

1. �
sub

✓ �
tf

2. �
dsf

✓ �
tf

3. �
dsf

� �
sub

6= Ø, �
sub

� �
dsf

6= Ø, and �
dsf

\ �
sub

6= Ø

Proof. First, we will show that �
sub

✓ �
tf

. Consider an x 2 �
sub

, since x is invertible we

know x 2 �
tf

. Therefore, �
sub

✓ �
tf

. Note that set equality occurs when there is only a

single subsystem.

Next, we will show that �
dsf

✓ �
tf

. Consider an x 2 �
dsf

, since x is invertible we

know x 2 �
tf

. Therefore, �
dsf

✓ �
tf

. Note that set equality occurs when there is only a

single state in the system.
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Finally, we will break up the last piece of the theorem into its three parts:

1. We want to show that �
dsf

� �
sub

6= Ø, i.e. (9x|x 2 �
dsf

^ x 62 �
sub

). Let x be

any orthogonal matrix that is not block diagonal, then a transformation of this form

maintains the dynamical structure function, but not the structured linear fractional

transformation.

2. We want to show that �
sub

��
dsf

6= Ø, i.e. (9x|x 2 �
sub

^x 62 �
dsf

). Let x be any block

diagonal matrix that does not meet the conditions x�1x�T = I + Ē where Ē = ĒT

and range(Ē) ✓ N (C). Then a transformation of this form maintains the structured

linear fractional transformation, but not the dynamical structure function.

3. We want to show that �
dsf

\�
sub

6= Ø, i.e. (9x|x 2 �
sub

^x 2 �
dsf

). Let x be any block

diagonal matrix such that x�1x�T = I + Ē where Ē = ĒT and range(Ē) ✓ N (C),

then a transformation of this form maintains both the structured linear fractional

transformation and the dynamical structure function.

The semantic relationship between the three system representations is given in Figure

5.5.

Example 12. Consider the dynamical structure function:

Q(s) =

266664
0 0 0

1
s

2+7s+12 0 0

1
s

2+7s+12 0 0

377775 , P (s) =

266664
1

s+1

0

0

377775 (5.92)

The corresponding signal structure of the dynamical structure function in (5.92) is given by:
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Manifest 
Structure

Data

Computational 
Structure

Signal Structure

Subsystem Structure

Figure 5.5: The actual relationships between the semantics of the transfer function, structured
linear fractional transformation, and the dynamical structure function.

A minimal realization of the dynamical structure function (5.92) is given by:

ẋ =

266666664

�1 0 0 0

0 �3 0 1

0 0 �3 1

1 0 0 �4

377777775
x+

266666664

1

0

0

0

377777775
u

y =

266664
1 0 0 0

0 1 0 0

0 0 1 0

377775 x

(5.93)

which is a 4th order state space model.
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u1 y1

y2

y3

Figure 5.6: The signal structure of the dynamical structure function in (5.92).

1. The first step in comparing the semantics of various system representations, given a

dynamical structure function (Q(s), P (s)) as in (5.92), is to calculate the associated

transfer function. This is accomplished by using the relationship:

G(s) = (I �Q(s))�1P (s)

to(5.92), which yields:

G(s) =

266664
1

s+1

1
s

3+8s2+19s+12

1
s

3+8s2+19s+12

377775 (5.94)

The associated manifest structure of the transfer function in (5.94) is given by:
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y1

y2

y3

u2

Figure 5.7: The manifest structure of the transfer function in (5.94).

A minimal realization of the transfer function (5.94) is given by:

ẋ =

266664
�2 �1 1

�
p
2
2 �4 �

p
2
2

1 1 �2

377775 x+

266664
p
2
2

0
p
2
2

377775 u

y =

266664
p
2
2 0

p
2
2

1
2 0 �1

2

1
2 0 �1

2

377775 x

(5.95)

which is a 3rd order state space model.

138



www.manaraa.com

2. The second step is to determine the structured linear fractional transformation given

by finding the graphical dual of the signal structure in Figure 5.6, to get a subsystem

structure:

S2

S1

S3

u1 y1

y2

y3

Figure 5.8: The subsystem structure that is the graphical dual of the signal structure in (5.6).
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Given the subsystem structure in Figure 5.8, the associated structured linear fractional

transformation is:

N =

2666666666666664

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 1 0 0

3777777777777775
, S(s) =

266664
1

s+1 0 0

0 1
s

2+7s+12 0

0 0 1
s

2+7s+12

377775 (5.96)

A minimal realization of the structured linear fractional transformation in (5.96) is

ẋ =

266666666664

�1 0 0 0 0

1 �7 �12 0 0

0 1 0 0 0

1 0 0 �7 �12

0 0 0 1 0

377777777775
x+

266666666664

1

0

0

0

0

377777777775
u

y =

266664
1 0 0 0 0

0 0 1 0 0

0 0 0 0 1

377775 x

(5.97)

which is a 5th order state space model.

3. The third step is to determine the associated semantics of each representation. The

semantics of the transfer function is any invertible T 2 R3⇥3. The semantics of the

structured linear fractional transformation is any block diagonal transformation of the
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form

T̂ =

266664
t1 0 0

0 T2 0

0 0 T3

377775
where t1 2 R1⇥1, T2 2 R2⇥2, and T3 2 R2⇥2, meaning T̂ 2 R5⇥5. Finally, we utilize the

transformation T̄ 2 R4⇥4 where T̄ T̄�T = I+Ē such that I+Ē where range(Ē) ✓ N (C)

and Ē = ĒT .

4. In order to make all the semantics comparable, we pad the states of the minimal

realization of the transfer function and the dynamical structure function. For the

transfer function we need to add two states that are uncontrollable and/or unobservable.

For the dynamical structure function we can add an unobservable state or we can use

the minimal realization of the structured linear fractional transformation to describe the

semantics.

5. The final step is the comparison of the corresponding sets. Figure 5.9 demonstrates the

sets of state space realizations associated with each system representation for di↵erent

orders of realizations. Note that for 3rd order systems the only semantics available are

for the transfer function. As we move onto 4th order systems, we continue to have

semantics for transfer functions, but now we also include dynamical structure functions.

Finally, for 5th order system, we have the semantics for the transfer function, dynamical

structure function, and structured linear fractional transformation.

Consider the set of all 3rd order state space models. Since the transfer function is

the only representation that is associated with a realization of order 3, it is the only

representation with a set of semantics in that universe. The set, which we denote �3
tf

is

characterized by a 3⇥ 3 invertible matrix, which means it has 9 free parameters.

If we move onto 4th order state space models, we now have semantics for both the

transfer function, �4
tf

, and the dynamical structure function, �4
dsf

. Since �4
tf

is the set
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χ3

χ4

χ5

χtf

χtf

χtf

χdsf

χdsf χsub

Figure 5.9: The relationship of semantics across di↵erent state space orders of the three
system representations: the transfer function, the dynamical structure function, and the
structured linear fractional transformation.

of all invertible matrices of size 4⇥ 4, the transformation T has 16 free parameters and

maps x1 2 �4
tf

to x2 2 �4
tf

. Another transformation T̄ maps x̄1 2 �4
dsf

to x̄2 2 �4
dsf

;

determining the number of free parameters is still an open problem, since the only

conditions we have on T̄ is T̄ T̄�T = I + Ē where range(Ē) ✓ N (C) and Ē = ĒT .

However, we can show that there exist transformations that maintain the transfer
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function and not the dynamical structure function. For example, the transformation

T =

266666664

0.8147 0.6324 0.9575 0.9572

0.9058 0.0975 0.9649 0.4854

0.1270 0.2785 0.1576 0.8003

0.9134 0.5469 0.9706 0.1419

377777775
(5.98)

maintains the transfer function, but not the dynamical structure function while the

transformation

T̄ =

266666664

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0
p
2

377777775
(5.99)

maintains both, meaning that �4
dsf

⇢ �4
tf

as shown in Figure 5.9.

Finally, we look at the set of all 5th order systems. Assuming we pad the set of realizations

consistent with the transfer function with uncontrollable and/or unobservable states, the

semantics of the systems show us that any invertible transformation, such as

T =

266666666664

0.2769 0.3171 0.7655 0.6463 0.6551

0.0462 0.9502 0.7952 0.7094 0.1626

0.0971 0.0344 0.1869 0.7547 0.1190

0.8235 0.4387 0.4898 0.2760 0.4984

0.6948 0.3816 0.4456 0.6797 0.9597

377777777775
(5.100)

maintains the transfer function, but not the dynamical structure function or the struc-

tured linear fractional transformation.

Next, we will look at the case where we pad the states of the dynamical structure

function. One method is to copy the shared hidden state in the same way it is used
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for the structured linear fractional transformation. Consider the state space model in

(5.97) which is a minimal realization of the structured linear fractional transformation;

the associated dynamical structure function is given by (5.92). So although it is not a

minimal realization of the dynamical structure function, it is a realization consistent

with the dynamical structure function. This means that the state space in (5.97), which

we denote x3, is an element of �5
dsf

, as well as �5
sub

and �5
tf

. This implies that the three

sets overlap.

The transformation

T̄ =

266666666664

1 0 0 0 0

0 0 1 0 0

0 0 0 0 1

0 0 0 1 0

0 1 0 0 0

377777777775
(5.101)

maps to the state space model

ż =

266666666664

�1 0 0 0 0

0 0 0 1 0

0 0 0 0 1

1 �12 0 �7 0

1 0 �12 0 �7

377777777775
z +

266666666664

1

0

0

0

0

377777777775
u

y =

266664
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

377775 z

(5.102)
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which maintains the dynamical structure function and the transfer function, but not the

structured linear fractional transformation. However, the transformation

T̂ =

266666666664

2 0 0 0 0

0 1 2 0 0

0 2 1 0 0

0 0 0 �2 1

0 0 0 1 �2

377777777775
(5.103)

maintains the structured linear fractional transformation and the transfer function, but

not the dynamical structure function. Thus, we have

(a) �
sub

✓ �
tf

(b) �
dsf

✓ �
tf

(c) �
dsf

� �
sub

6= Ø, �
sub

� �
dsf

6= Ø, and �
dsf

\ �
sub

6= Ø

as proven in Theorem 12.

In addition, another way to pad states in the dynamical structure function is to add

unobservable states to the 4th order state space system in (5.93) which leads to:

ẋ =

266666666664

�1 0 0 0 0

0 �3 0 1 0

0 0 �3 1 0

1 0 0 �4 0

0 0 0 0 �5

377777777775
x+

266666666664

1

0

0

0

0

377777777775
u

y =

266664
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

377775 x

(5.104)
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which is an element of �
tf

and �
dsf

, but not �
sub

.

5.3 Necessary and Su�cient Conditions for Reconstruction of the Structured

Linear Fractional Transformation

Consider the relationship between the transfer function and structured linear fractional

transformation

G(s) = (I � S(s)K)�1S(s)L.

This can be rearranged as

G(s) = S(s)L+ S(s)KG(s) (5.105)

G(s)T = (S(s)L)T +G(s)T (S(s)K)T (5.106)

G(s)T =


I G(s)T

�264 (S(s)L)T

(S(s)K)T

375 (5.107)

Before proceeding, we require the following definition:

Definition 22. Given A 2 Rm⇥n and B 2 Rp⇥q, the Kronecker product A⌦B is the mp⇥nq

matrix:

A⌦ B =

266664
a11B ... a1nB

...
. . .

...

a
m1B ... a

mn

B

377775 (5.108)

Given the definition of a Kronecker product, we can show that ~z is the vector created by

stacking the columns of ZT , which means that

~g =


I ⌦ I I ⌦G(s)T

�264 ~sl
~sk

375 (5.109)
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Let F =


I ⌦ I I ⌦G(s)T

�
, then F 2 Cpm⇥pm+p

2
.

Note that this is in the form Ax = b, where A and b are known and x is the unknown.

However every entry of ~sl and ~sk are the sum of entries of S(s) multiplied by entries of L

and K respectively. Therefore, the next step we take is to separate these sums out. However,

before we proceed, we first note that:

1. S(s) 2 Cp⇥r, meaning there are rp unknowns in S(s)

2. L 2 {0, 1}r⇥m, meaning there are rm unknowns in L

3. K 2 {0, 1}r⇥p, meaning there are rp unknowns in K

4. Overall, there are 2rp+ rm unknowns.

We will call the parameters in S(s) the dynamic parameters, of which there are rp,

and the parameters of L and K the structural parameters, of which there are rp+ rm. Now,

note that the parameters of S(s) and


L K

�
cannot be separated; therefore, we introduce

the notion of codependent parameters. Since S(s) is p⇥ r and L is r ⇥m, there are p⇥m

entries of S(s)L each containing a sum of r entries, yielding pmr codependent parameters.

Similarly, S(s)K has p2r codependent parameters. Therefore, the structured linear fractional

transformation has pmr + p2r codependent parameters.

Given this, we can rewrite the equation for F as:

~g =


I ⌦ (I ⌦ 11⇥r

) I ⌦ (G(s)T ⌦ 11⇥r

)

�

2666666666666664

sl1
...

sl
pmr

sk1
...

sk
p

2
r

3777777777777775
where sl

i

is the ith codependent parameter of S(s)L and sk
j

is the jth codependent parameter

of S(s)K. Let H =


I ⌦ (I ⌦ 11⇥r

) I ⌦ (G(s)T ⌦ 11⇥r

)

�
, then H 2 Cpm⇥pmr+p

2
r.
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Lemma 13. Consider the pmr + p2r ⇥ k transformation T such that x̂ = Tz, where z is an

arbitrary vector of k transfer functions and

x̂ =

2666666666666664

sl1
...

sl
pmr

sk1
...

sk
p

2
r

3777777777777775
.

Let

M̂ = HT, (5.110)

then M̂ is injective if and only if k  pm and rank(M̂) = k.

Proof. This stems from the fact that M̂ is a pm⇥ k matrix, and M̂ is injective if and only if

it has full column rank, meaning k  pm and rank(M̂) = k.

Definition 23. Dynamic and structural parameters are considered active if they are nonzero

at least once with a corresponding parameter in a codependent parameter.

Lemma 14. The codependent parameters can be uniquely determined () the active

structural and dynamic parameters can be uniquely determined.

Proof. Given the structural and dynamic parameters, the codependent parameters can

be determined uniquely by multiplying the structural and dynamic parameters together.

Specifically, given L,K and S(s), we can compute s
ij

(s)l
jh

and s
ij

(s)k
jh

by multiplication of

the corresponding entry.

Now, we look more closely at extracting the entries of L,K and S(s) given the

codependent parameters of the structured linear fractional transformation. Since L and K are

boolean matrices, any non-zero codependent parameter can be decomposed into its structural
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and dynamic parameters. A structural or dynamic parameter r cannot be determined from

the codependent parameters when every codependent parameter in which it appears is zero.

If this is the case, then it is not an active parameter, which completes the proof.

Theorem 13. Given a system characterized by the transfer function G(s), the active param-

eters of its structured linear fractional transformation (N,S(s)) can be identified if and only

if

1. M̂ , defined in (5.110), is injective, and

2. ~g 2 R(M̂)

Proof. The proof follows immediately from the observation that M̂ is a mapping from

unidentified model parameters to the system’s transfer function, i.e. M̂z =  �g . Under

these conditions one can solve for z given G(s) and then use the reconstructed codependent

parameters to determine the active structural and dynamic parameters as in Lemma 14.

Example 13. Given the following transfer function of a system:

G(s) =

264 1
s+1

1
(s+1)(s+2)

375 (5.111)

we attempt to find the structured linear fractional transformation of the system:

N =

2666666666666664

0 1 0

0 0 1

l11 k11 k12

l21 k21 k22

l31 k31 k32

l41 k41 k42

3777777777777775
S(s) =

264s11(s) s12(s) s13(s) s14(s)

s21(s) s22(s) s23(s) s24(s)

375 (5.112)

Note that from the shape of matrices in (5.112) that p = 2, m = 1, and r = 4. We get

the values for p and m directly from the shape of the transfer function, but it may not be
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immediately clear why r = 4. Given that p = 2 and we assume every output of a subsystem is

measured, then there are at most p = 2 subsystems. Now, given that each subsystem can be

an input to the other and we have m = 1 input, the number of inputs each subsystem can

have is p� 1 +m = 2. This means we have two subsystems with two potential inputs each,

yielding r = p(p� 1 +m) = p2 � p+ pm = 4.

From (5.112) the vector of unknown codependent paramaters is

x̂ =

2

66666666666666666666666666666666666666666666666666666666666666666666664

s11(s)l11

s12(s)l21

s13(s)l31

s14(s)l41

s21(s)l11

s22(s)l21

s23(s)l31

s24(s)l41

s11(s)k11

s12(s)k21

s13(s)k31

s14(s)k41

s11(s)k12

s12(s)k22

s13(s)k32

s14(s)k42

s21(s)k11

s22(s)k21

s23(s)k31

s24(s)k41

s21(s)k12

s22(s)k22

s23(s)k32

s24(s)k42

3

77777777777777777777777777777777777777777777777777777777777777777777775

. (5.113)

From this we can derive the system of equations of the form Hx̂ = �g where

H =


H1 H2 H3

�
(5.114)

with

H1 =

2641 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

375
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H2 =

264 1
s+1

1
s+1

1
s+1

1
s+1

1
(s+1)(s+2)

1
(s+1)(s+2)

1
(s+1)(s+2)

1
(s+1)(s+2)

0 0 0 0 0 0 0 0

375

H3 =

264 0 0 0 0 0 0 0 0

1
s+1

1
s+1

1
s+1

1
s+1

1
(s+1)(s+2)

1
(s+1)(s+2)

1
(s+1)(s+2)

1
(s+1)(s+2)

375 .

Without additional a priori information about the structure or dynamics of the system, we

cannot reconstruct the structured linear fractional transformation.

Now, suppose that we know a priori that the boolean matrix L takes the form:

L =

266666664

1

0

0

0

377777775
(5.115)

This knowledge reduces the number of unknowns in (5.113) from 24 codependent parameters

to 18. This is still not enough for reconstruction, so let us further assume that we also know

that boolean matrix K takes the form:

K =

266666664

0 0

0 0

0 1

0 0

377777775
(5.116)

This knowledge further reduces the number of unknowns in from 18 codependent parameters to

just 4. Surprisingly, this is still not enough a priori information for a unique reconstruction.

Finally, assume that we also know

s21(s)l11 = 0

s13(s)k31 = 0
(5.117)
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which leaves use with 2 unknowns in (5.113), which is su�cient for network reconstruction.

The vector of unknowns x̂ can then be decomposed into the form T̂ ẑ where T̂ is a

24⇥ 2 binary matrix with a 1 only in the (1, 1) and (19, 2) entries. Then, we can get

ẑ =

264s11l11

s23k31

375 (5.118)

Now, from Theorem 13 we can determine the equation M̂ẑ = �g where M̂ = HT̂ , given by

2641 0

0 1
s+1

375
264s11l11

s23k31

375 =

264 1
s+1

1
(s+1)(s+2)

375 (5.119)

In this case, M̂ is full rank, so from Theorem 13 we know that the system is reconstructible.

Since ẑ = M̂�1 �g we obtain the following structured linear fractional transformation:

N =

2666666666666664

0 1 0

0 0 1

1 0 0

0 0 0

0 1 0

0 0 0

3777777777777775
and S(s) =

264 1
s+1 0 0 0

0 0 1
s+2 0

375 (5.120)

5.3.1 Unknown Codependent Parameters

Example 13 demonstrates the main issue with reconstruction of the structured linear fractional

transformation, that the size of each subsystem and number of subsystems are not known a

priori. This means we need to reconstruct the system based on the worst case scenario that

every subsystem is a↵ected by every other subsystem and every external input. Unless we

know r a priori, this means we need to determine pmr + p2r codependent parameters with

an upper bound of r  p2 � p+ pm, i.e. an upper bound on the number of unknowns in a
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structured linear fractional transformation representation is

p4 � p3 + 2p3m� p2m+ p2m2 (5.121)

Lemma 15. Let the amount of a priori information about the codependent parameters of the

structured linear fractional transformation be denoted by the triple (x1, x2, x3) where

1. x1 be the number of nonzero codependent parameters, i.e. the structural and dynamic

parameters are both nonzero,

2. x2 the number of zero-valued structural parameters, and

3. x3 the number of zero-valued dynamic parameters

we also define x4 to be the number of codependent parameters that include the overlap of

elements that have both zero-valued structural and dynamic parameters known a priori. Then

the structured linear fractional transformation can be reconstructed if

x1 + px2 + (p+m)x3 � x4 � p4 � p3 + 2p3m� p2m+ p2m2 � pm (5.122)

and the conditions of Theorem 13 hold.

Proof. From the definition of the codependent parameters we know that x1 reduces one

codependent parameter for each known codependent parameter. Moreover x2 reduces the

number of codependent parameters by p for each one that is known, while x3 reduces the

number of codependent parameters by p+m for each one that is known. Finally, x4 comes

from the principle of inclusion and exclusion.

Since H is a pm⇥ (pmr+p2r) transfer function matrix and Theorem 13 requires M̂ to

be injective, we know we must reduce H to a pm⇥ k transfer function matrix, where k  pm.

This can only be achieved if the a priori information reduces the codependent parameters so

that

pmr + p2r � (x1 + px2 + (p+m)x3 � x4)  pm (5.123)

153



www.manaraa.com

which means

x1 + px2 + (p+m)x3 � x4 � pmr + p2r � pm (5.124)

Since we know that r  p2 � p+ pm, we use the upper bound to state

x1 + px2 + (p+m)x3 � x4 � p4 � p3 + 2p3m� p2m+ p2m2 � pm (5.125)

Example 14. Consider the transfer function in (5.111) where the unknown codependent

parameters of the structured linear fractional transformation are given by the vector in (5.113),

which has 24 unknown parameters. Example 13 had p = 2, m = 1, and r = 4 (as an upper

bound). If we apply these values to the equation in (5.121) we get:

24 � 23 + 2(2)3(1)� 22(1) + 22(12) = 24 (5.126)

Equation 5.125 from Lemma 15 states that

x1 + px2 + (p+m)x3 � x4 � p4 � p3 + 2p3m� p2m+ p2m2 � pm

i.e.

x1 + 2x2 + 3x3 � x4 � 22 (5.127)

For Example 13, we know that from (5.115) and (5.116) we had x2 = 10 and from (5.117)

we had x1 = 2, with x3 = 0 and x4 = 0. Plugging these values into (5.127) yields:

2 + 2(10) = 22 � 22

which, by Lemma 15, is su�cient to reconstruct the structured linear fractional transformation,

as was done in (5.120)
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5.3.2 Information Cost Comparison

Given these results, we will know focus on the comparison of the structure linear fractional

transformation to the dynamical structure function, which means we want to look at the case

when each subsystem is a single input-single output transfer function. In this case, we know

that S(s) is a diagonal matrix, which greatly reduces the number of unknown codependent

parameters in the system meaning less a priori information is needed to reconstruct.

Theorem 14. Given that each subsystem in a structured linear fractional transformation

(N,S(s)) is single-input, single-output, i.e. that S(s) is diagonal, and letting ↵ be the number

of codependent parameters that are known a priori, then the conditions for reconstruction are

that

↵ � p2 � p (5.128)

and the conditions of Theorem 13 hold.

Proof. Given that S(s) is diagonal, we know S(s) is a p⇥ p transfer function matrix with

p unknown dynamic parameters. Furthermore, L is a p ⇥ m boolean matrix with pm

unknowns and K is a p ⇥ p matrix with p2 � p unknowns. The matrix S(s)L yields pm

unknown codependent parameters and the matrix S(s)K yields p2� p unknown codependent

parameters. Therefore, there are p2 � p+ pm unknown codependent parameters and in order

to reduce Ĥ 2 Cpm⇥(p2�p+pm) so that M̂ from Theorem 13 is injective, we require that

↵ � p2 � p+ pm� pm or ↵ � p2 � p

The following example presents the methodology of reconstructing the structured

linear fractional transformation, assuming that it is the graphical dual of the dynamical

structure function. This means we assume each subsystem is SISO and each subsystem does

not a↵ect itself through a visible node.
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Example 15. Given the transfer function (5.111), we attempt to find the structured linear

fractional transformation of the system:

N =

266666664

0 1 0

0 0 1

l11 k11 k12

l21 k21 k22

377777775
S(s) =

264s11(s) 0

0 s22(s)

375 (5.129)

The associated codependent parameters are now given by

x̂ =


s11(s)l11 s22(s)l22 s11(s)k11 s11(s)k12 s22(s)k21 s22(s)k22

�
T

(5.130)

Another assumption of the dynamical structure function is that the Q(s) matrix is

hollow. This can be achieved in the structured linear fractional transformation by setting

k11 = 0 and k22 = 0. This gives us the codependent parameters as

x̂ =


s11(s)l11 s22(s)l22 s11(s)k12 s22(s)k21

�
T

(5.131)

which gives us only 4 unknown parameters as opposed to the 24 from Example 13. This

demonstrates the dramatic reduction in parameters brought about by the assumption that the

structured linear fractional transformation is the dual of the dynamical structure function.

Now, we can write Ĥx̂ = �g as

2641 0 1
(s+1) 0

0 1 0 1
(s+1)(s+2)

375
266666664

s11(s)l11

s22(s)l22

s11(s)k12

s22(s)k21

377777775
=

264 1
s+1

1
(s+1)(s+2)

375 (5.132)
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Assume that we know p2 � p = 22 � 2 = 2 codependent parameters a priori, as

mentioned in Theorem 14. In particular, assume we know s22(s)l22 = 0 and s11(s)k12 = 0,

then we can decompose x̂ into T̂ ẑ as follows:

T̂ =

266666664

1 0

0 0

0 1

0 0

377777775
and ẑ =

264s11(s)l11

s22(s)k21

375 (5.133)

Now, from Theorem 13 we can determine the equation M̂ẑ = �g where M̂ = HT̂ , given by

2641 0

0 1
s+1

375
264s11(s)l11

s22(s)k21

375 =

264 1
s+1

1
(s+1)(s+2)

375 (5.134)

which yields the structured linear fractional transformation

N =

266666664

0 1 0

0 0 1

1 0 0

0 1 0

377777775
S(s) =

264 1
s+1 0

0 1
s+2

375 (5.135)

5.4 Conclusion

Note that we detailed three methods for comparing system representations: orders of minimal

realization, sets of network semantics, and information cost of identifiability conditions. The

order of a minimal realization of a dynamical structure function and its associated information

cost for reconstruction are both lower than respective order of a minimal realization and

associated information cost of the structured linear fractional transformation. However, the

semantics of the system also suggest another relationship, demonstrating that the set of

state space realizations associated with the dynamical structure function is di↵erent from,
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but possibly overlaps with, the set of state space realizations associated with the structured

linear fractional transformation. Future work will investigate the relationship between the

two partial structure representations further.
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Part II

Applications: Chapters 6 - 8
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Chapter 6

Polynomial-Time Reconstruction of the Dynamical Structure Function

(Published at CDC 2013 as “Robust Signal-Structure Reconstruction”)

Abstract

This paper focuses on the reconstruction of the signal structure of a system in the presence of

noise and nonlinearities. Previous results on polynomial time reconstruction in this area were

restricted to systems where target specificity was part of the inherent structure, [16]. This

work extends these results to all reconstructible systems and proposes a faster reconstruction

algorithm along with an improved model selection procedure. Finally, a simulation study

then details the performance of this new algorithm on reconstructible systems.
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6.1 Introduction

The process of network reconstruction is the attempt to determine the structure and dynamics

of a networked system. The simplest representation of a linear time-invariant system is

its transfer function, G. The process for determining a system’s transfer function from

input-output data is known as system identification, (see Figure 6.1). Unfortunately, a

system’s transfer function contains very little information about the internal structure of a

network.

A linear time-invariant system’s state space realization o↵ers a more detailed repre-

sentation of a system’s structure. Although rich in information, the process of reconstruction

from input-output dynamics to the state space realization, (A,B,C,D), known as the realiza-

tion process (see Figure 6.1), is ill-posed since there are many possible state space realizations

for a single transfer function matrix.

Another representation of the structure of a network is a system’s dynamical structure

function, (Q,P ), which was originally introduced in [24]. Dynamical structure functions

(DSF) contain more information about a system’s structure than the transfer function,

while requiring only weak a priori information, compared to the state space realization, to

reconstruct from input-output dynamics.

The DSF describes the network structure of a system in the sense that the matrix

Q can be interpreted as the weighted adjacency matrix of a directed graph indicating the

causal relationships between measured states. Also, P is the weighted adjacency matrix of

a directed graph indicating the causal relationships between inputs and measured states.

The weights on the edges of this graph are TFs between relevant variables. This graphical

representation of the DSF is referred to as the signal structure of the system.

The DSF of a system denotes the structure and dynamics of a linear time-invariant

system at a resolution consistent with the number of measured states. This means if less

states are measured, the structure of the DSF would relate closely to the structure of a
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system’s transfer function, while more measured states implies that the structure of the DSF

is closer to the structure given by the state space representation of the system.

As with a system’s state space, the process of determining a system’s DSF from

input-output data is ill-posed without any a priori information about the network. However,

given a DSF of a system (Q,P ), the transfer function for that system is uniquely defined as

G = (I �Q)�1P , [24].

Definition 1. A system’s DSF is considered reconstructible if there exists a priori information

about the network that creates a bijection between a system’s transfer function and it’s DSF.

Data     Models 
Reconstruction Realization 

Identification 

Transfer 
Function 

Dynamical 
Structure Function 

State 
Realization 

Structural 
Informativity 

G (Q,P) (A,B,C,D) 

Figure 6.1: System Representations Organized by Structural Informativity

In [73], a robust reconstruction method was presented that allowed for the reconstruc-

tion of the signal structure of a network when noise and nonlinearities were present in the

system. This approach calculates the optimal dynamical structure function for all possible

Boolean structures, i.e. all possible ways of connecting the network, and then uses a model

selection technique to determine the best possible Boolean structure. Unfortunately, iterating

over all possible Boolean structures involves a computational complexity of O(2p), which

greatly restricts its usage to that of small networks, e.g. networks with less than three or

four measured states.

Several algorithms were proposed in [16] that improved the computational complexity

of the robust reconstruction method from exponential to polynomial. However, the algorithms

proposed are for systems which are target specific, meaning for each measured state there
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exists a corresponding input that perturbs that measured state, possibly through a hidden

(unmeasured) state, and that input does not perturb any other measured states except

through the corresponding measured state. In [7], necessary and su�cient conditions for

network reconstruction were proposed that show that target specificity is su�cient, but not

necessary for reconstruction. This implies that there exist reconstructible networks for which

the target specificity assumption fails. This paper extends the polynomial time algorithm to

these cases, which can be common, for example, in proteomics and other applications.

In Section 6.2, we extend the robust reconstruction problem to include all recon-

structible networks, not only those that meet the target specificity assumption. In Section

6.3, we extend the polynomial time algorithm for dynamical structure functions to all

reconstructible networks and propose a new reconstruction algorithm that reduces the com-

putational complexity of the reconstruction process. Section 6.4 provides an improved model

selection procedure. Section 6.5 contains the results of simulation studies. Finally, in Section

6.6 we present our conclusions.

6.2 Robust Reconstruction for Dynamical Structure Functions

Previous robust reconstruction results in [73] use a method that requires target specificity.

The results in this paper remove the requirement of target specificity to allow for the robust

reconstruction of all possible reconstructible networks, [15].

To model the input-output data with noise and nonlinearities, we begin by considering

an additive uncertainty on the control structure P , as seen in Figure 6.2. In this framework,

the “true” system is given by (I �Q)�1(P +�), where � represents unmodeled dynamics,

including noise and nonlinearities. Given this uncertainty, we define the distance from data

to a particular Boolean structure to be ||�||, in an appropriate norm.

Figure 6.2 illustrates the relationship:

Y = (I �Q)�1(P +�)U.

163



www.manaraa.com

Δ(s)

P(s)

Q(s)

Y(s)U(s)

Figure 6.2: Additive uncertainty on P

This can be rewritten as:

�U = Y �

Q P

�264Y
U

375 .

We can then exploit the fact that U is a diagonal matrix, based on the way experiments

are performed in which only one input is a↵ected at a time, which gives us:

||�U || = ||c�I|| = ||c�|| = |c|||�||,

where c 6= 0 is the amount each input is perturbed. Thus, we note that minimizing ||�U || is

equivalent to minimizing ||�||.

We highlight that this method of determining the correct structure of a network makes

the following assumptions:

1. experiments are performed sequentially, with each input taking a turn,

2. the size of the perturbation on each input is of equal magnitude.
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The purpose of minimizing ||�|| is to determine the Boolean structure with the smallest

distance from given input-output data from experiments performed on the system. Therefore,

we want to solve the following problem:

� = min
Q,P

||Y �

Q P

�264Y
U

375 ||

Stacking the unknowns from Q and P into a vector x, this can be written as w � Lx,

where w is the matrix Y stacked into a vector row by row and

L =

266664
y2 ... yn 0 ... ... 0 u1 ... un

0 ... ... 0

0 ... 0
. . . 0 ... 0 0 ... 0

. . . 0 ... 0

0 ... ... 0 y1 ... yn�1 0 ... ... 0 u1 ... un

377775 (6.1)

where y
i

and u
i

are the ith columns of Y T and UT , respectively. Note that we remove a column

of y on each row of L because the definition of Q from [24] states that the diagonal values of

Q are known to be zero. This means that there are p2 � p possible Boolean structures of Q

and pm possible Boolean structures of P , yielding pm+ p2 � p possible Boolean structures

for x.

If we index the possible combinations of Boolean structures with v = 1, ..., pm+p2�p,

then consider the vth Boolean dynamical structure function and denote (Q
v

, P
v

) as a dynamical

structure function with this Boolean structure. We can then reorganize the problem so that

it becomes:

�2
v

= inf
x2�

v

||w � Lx||22 (6.2)

where �
v

is the set of all x that satisfy the constraints of the vth Boolean structure.

It is well known that this problem is ill-posed, since L is not full column rank. As

proposed in [7], certain elements of x must be known a priori in order for the system to be

reconstructible, this information is contained in a (pm+ p2 � p)⇥ k transformation matrix T
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so that x = Tz, where z is the reduced number of unknowns such that LT has full column

rank, meaning k  p2. The information contained in T could come from knowing how inputs

a↵ect the system or how states within the system interact (or fail to interact) with each other.

For example, if we knew that the system was target specific, then we know that P is square

and diagonal, which is information that can be incorporated into T . The complete necessary

and su�cient conditions for reconstructibility are provided in [7].

Therefore, the robust reconstruction problem can finally be stated as:

�2
c

= inf
z2⇣

c

||w �Mz||22 (6.3)

where M = LT and ⇣
c

⇢ �
v

is the set of all z that satisfy the constraints of the cth Boolean

structure, where c = 1, ..., k.

6.3 Polynomial Time Reconstruction Algorithm

Assuming our system meets the requirements to be reconstructible, we now develop a

polynomial time algorithm for robust reconstruction. A greedy polynomial-time algorithm

for the reconstruction of networks with target specificity was given in [16].

The extension of the algorithm to all reconstructible networks, including those that

may fail target specificity, requires the redefinition of several terms in the algorithm. First,

we redefine the term S, which originally represented the Boolean structure of Q in [16], to

be the Boolean structure of the vector z, which could contain elements of both P and Q.

Furthermore, we note that we utilize � as defined in Equation 6.3 rather than � as defined in

[16]. The superscripts on S and � in Algorithm M2 and M3 refer to the number of links (i.e.

non-zero elements) for that Boolean structure, unless otherwise stated.
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Algorithm M2

Set Sk to the fully-connected structure.

for j = k ! 1 do

Remove one link of Sj at a time to obtain a set of j structures with j � 1 links and

calculate �j�1 for each of these structures.

Set Sj�1 as the minimum-�j�1 structure.

end for

Set S0 as the decoupled structure.

Apply a model selection procedure to the set S = {Sj}.

We now propose a new algorithm, similar to the one above, which takes advantage of

two important facts:

1. Algorithm M2 is a greedy algorithm that keeps a record of only one structure for each

possible structure with j links, where j ranges from 0 to k and

2. As noted in [73], the structures with more links have lower � scores since they have

more degrees of freedom.

The algorithm will also make use of the following definition:

Definition 2. The term full refers to the Boolean structure of the fully-connected network,

i.e. a k⇥ 1 vector of ones. The term full-x, where x is a positive integer less than k, refers to

a Boolean structure with x links missing, i.e. x entries of full-x are zeros, the rest are ones.

Example 16. If the full Boolean structure of a system is given by


1 1 1

�
T

, then the possible

full-1 Boolean structures are:


0 1 1

�
T

,


1 0 1

�
T

, and


1 1 0

�
T

.

First, we use an iterative procedure to determine which links are the least likely to

occur in the correct network. The full -1 Boolean structure with the jth value set to zero is

denoted S1
j

and its associated � from Equation 6.3 we denote �1
j

. Then, another iterative
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procedure determines a candidate set S, with one structure (Sk) for each level of sparsity (k

links). Finally, a model selection procedure is applied to this reduced set to select a single

solution.

Algorithm M3

Set Sk to the fully-connected structure.

for j = k ! 1 do

Set the jth position of S1
j

to 0 and calculate �1
j

.

Store S1
j

, �1
j

, and j in F .

end for

Sort F by �1
j

in descending order.

Set S to the fully-connected structure.

for d = k ! 1 do

Remove from S the link corresponding to the 0 location of the dth structure from F .

Set Sd to S.

Calculate �d for Sd.

end for

Set S0 as the decoupled structure.

Apply a model selection procedure to the set S = {Sd}
Algorithm M3 reduces the overall number of structures that need to be considered

from O(p4) for Algorithm M2 to O(p2), [16].

This means that Method M3 only needs to consider the structures circled in red

in Figure 6.3, rather than all allowable structures considered by Method M2 in order to

determine the correct structure.

To determine when a solution can be found by Algorithm M3, we begin with the

following Lemma:

Lemma 16. A given reconstruction is solvable by Method M3, i.e. the true structure will

appear in the candidate set, if no full-1 link structure with a zero that does not appear in the

168



www.manaraa.com

Figure 6.3: An example problem showing � values plotted against number of links for the
allowable set of Method M2. The structures considered by Method M3 are circled in red.

true structure has a lower � score than all full-1 link structures with zeros that appear in the

true structure.

Proof. If all the full -1 link structures that have zeros in the true system have lower � scores

than every other full -1 link structure, then their combination will be selected by Method M3

ensuring that the true solution will appear in the candidate set.

Theorem 15. If no noise is present in the system, Method M3 will ensure that the true

structure is part of the candidate set, assuming there is su�cient data for reconstruction.

Proof. As noted in [73], due to the additional degrees of freedoms provided by extra connec-

tions, all Boolean structures Sj with zeros obtained from any ordered combination (where

order refers to the iterative manner in which links were eliminated to obtain Sj) which

coincide with locations of zeros in the true structure will have a cost � = 0. Furthermore, all
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Boolean structures that have at least one zero that does not correspond to missing links in

the true structures will have � > 0.

Therefore, when no noise is present in the system all Boolean structures with one link

missing that correspond to a missing link in the true structure will have � values lower than

all Boolean structures with one link missing that does not appear in the true structure. By

Lemma 16, this guarantees that the true structure is part of the candidate set.

Corollary 3. There exists ✏ > 0 and r > 0, where ✏ represents the noise in the system,

such that if ✏ < r, Method M3 will ensure that the true structure is part of the candidate set,

assuming there is su�cient data for reconstruction.

Proof. This follows from Theorem 15 by continuity.

6.4 Model Selection Procedure

The original robust reconstruction method in [73] noted that finding an optimal � yields a

series of candidate solutions that have more degrees of freedom than the true network due

to overfitting, so a model selection procedure is required to penalize extra connections in

the candidate solutions. The Akaike Information Criterion (AIC) was proposed as a model

selection procedure and is defined as:

AIC = 2k � 2ln(L)

where k is the number of parameters in the model and L is the maximized value of the

likelihood function for the model, [14].

Akaike’s Information Criterion with correction for finite sample sizes is defined as:

AICc = AIC +
2k(k + 1)

n� k + 1

where n is the sample size.
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A customized AIC was used in [73] for the minimization of the likelihood function

and was defined as follows:

AIC
original

= 2k + nln

✓
2⇡L

n
+ 1

◆
(6.4)

However, AIC
original

did not scale well to large networks and the use of the natural logarithm

heavily favored the full link structure when noise was present in the system. To overcome

these issues we use a customized form of the Akaike Information Criterion, which we will call

the Chetty-Warnick Information Criterion:

CWIC
k

=
�
k

N + C
+ L

k

where �
k

is defined in Equation (6.2), N is the number of unknowns in Q, C is the number

of unknowns in P , and L
k

is the number of nonzero entries in the kth Boolean structure.

Dividing � by N + C scales � by the size of the known network, since the di↵erence in �

for the candidate solutions becomes smaller as the size of the measured network increases.

Furthermore, we use only the minimized value of � rather than the ln(�) because, as mentioned

above, the natural logarithm heavily favors the completed connected network, making it

di�cult to correctly identify the true network.

CWIC with correction for finite sample sizes is then given by:

CWICc
k

= V IC
k

+
2L

k

(L
k

+ 1)

N + C � L
k

+ 1

A comparison of the reconstruction process as noise variance increases using Method

M3 with AIC
original

and the CWIC is given in Figure 6.4. The network being reconstructed

is a linearized version of the single feedback loop defined in [73].

As Figure 6.4 shows, CWIC performs better than the original AIC as noise variance

increases.
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Figure 6.4: Comparison of reconstruction problems successfully solved using Algorithm M3

using the original AIC and CWIC as the model selection procedure.

6.5 Simulations

Our empirical study will focus on:

1. Compare the accuracy of the Method M3 before the redefinition of variables from [16]

to Method M3 as defined in Section 6.3 of this paper,

2. Comparing the accuracy of Method M2 to Method M3, where the model selection

procedure is the CWIC,

3. Determining whether the accuracy of reconstruction is degraded by increasing the size

of a network, and

4. Improving the accuracy of reconstruction through improved data collection techniques.

The data in these simulations are continuously sampled, with no missing data points.
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u1

u2 u3

y2 y3

y1

Figure 6.5: Non-Target Specific Ring Network. Green nodes represent inputs and red nodes
represent outputs.

6.5.1 Analyzing Non-Target Specific Reconstruction

The first simulation demonstrates why a redefinition of the reconstruction algorithm was

even necessary by using a single feedback loop with a single extra edge to make it non-target

specific, as seen in Figure 6.5. It is trivial to show that this network is reconstructible.

Figure 6.6 shows the results of reconstruction using Method M3 both with and without

the assumption that the non-target specific network is target specific. As the figure shows,

assuming that the system is target specific when it isn’t leads to catastrophic failure in the

network reconstruction procedure.

6.5.2 Comparison of Polynomial Time Algorithms

Our next result comes from the comparison of Method M2 and Method M3. In Figure 6.7,

we note that the two methods seem almost indistinguishable.
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Figure 6.6: Reconstruction of non-target specific network with and without the assumption
that it is target specific.

We expect Method M3 to begin failing when a full � 1 structure which has a zero

that appears in the true structure has a larger � value than a full � 1 structure which has a

zero that does not appear in the true structure. In this case the true structure is not part of

the candidate set provided by Method M3.

The true structure could potentially be found in the candidate set generated by

Method M2 if the � value of the structure with non-true zero, mentioned above, combined

with zeros that are true values is higher than the combined values of the true zero, mentioned

above, with higher � combined with the other true zero structures.

The fact that the two methods seem almost indistinguishable means that this situation

probably doesn’t occur for this particular example, although that may not be true in general.

6.5.3 Increasing Network Size

Now, in order to see how the accuracy of reconstruction degrades as the size of the network

increases, we introduce the ring of rings network and assume target specificity in Figure 6.8
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Figure 6.7: Comparison of reconstruction methods M2 and M3. Note that the two perform
similarly in spite of the fact that M2 searches over a larger set of possible candidates for the
true structure.

(inputs not shown). The rings of rings is interesting since it has a full transfer function, but,

as the figure shows, it is clearly very structured.

All things being equal, we now compare the accuracy of reconstructing various subsets

of the ring of rings in Figure 6.9. The first set is just a single loop of 3 nodes, the second is

two loops of 3 nodes each with one connection between them, the third is three loops of 3

nodes each with a connection between the first and second loop and the second and third

loops, and finally the fourth is the complete ring of rings network.

As the figure shows, the network reconstruction process degrades as the size of the

network grows. The point of a polynomial time algorithm is to allow for the reconstruction of

large networks, so if the reconstruction process degrades with network size, the new algorithm

isn’t very useful. We now provide several ways in which to improve data collection so that

network reconstruction of large networks is viable.
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Figure 6.8: Ring of Rings Network

6.5.4 Improving Results

The best way to improve results is to improve data collection.

Repeated Experiments

Firstly, we note that repeating experiments on the network can drastically increase the

accuracy of reconstruction by averaging out noise in the system. If the cost of experiments

is high, reconstruction is still possible, but with much smaller ✏. This is made evident in

comparing reconstruction for increasing noise variance with no repeated experiments to

reconstruction with noise averaging, again using a linearized single feedback loop, in Figure

6.10.

The figure shows that increasing the noise averaging allows for more accurate recon-

struction.
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Figure 6.9: Comparison of reconstruction problems for increasing network size.

Figure 6.10: Comparison of robust network reconstruction of a single feedback loop with and
without noise averaging.

Increasing Data Amount

Another way to improve the accuracy of the reconstruction process is to increase the number

of data points collected during each experiment. Our conjecture is that as the size of the
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network grows, the number of data points that must be collected in order to accurately

reconstruct must grow exponentially, though validating this conjecture is beyond the scope

of this work. Figure 6.11 shows the increase in accuracy as the number of points collected

during each experiment increases for the case of the ring of rings network.

Figure 6.11: Improved reconstruction with increased data collection.

6.6 Conclusion

In this paper we extended the robust reconstruction problem beyond those networks that met

the strict assumption of target specificity to include all reconstructible networks. Furthermore,

we improved upon previously proposed reconstruction algorithms by further reducing the

computational complexity of the reconstruction method. Then, we customized our existing

model selection procedure to scale with the size of the network in order to ensure accurate

reconstructions for large networks.
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Chapter 7

Passive Reconstruction of the Dynamical Structure Function

(Published at ACC 2016 as “Passive Reconstruction of Non-Target-Specific

Discrete-Time LTI Systems”)

Abstract

Much of the existing literature on the reconstruction of a system’s dynamical structure

functions has focused on learning the structure of a system using experiments in which

each measured state must be perturbed independently. This work develops a reconstruction

procedure that does not require multiple targeted experiments, instead determining the

structure of the network when inputs are drawn from a Gaussian distribution and are active

simultaneously.

Although similar reconstruction procedures exist in the literature, this algorithm

removes the restriction of target specificity, which states that each input must independently

a↵ect a measured state in the system. This allows for the reconstruction procedure to be

applied to a larger number of networks that were previously not reconstructible because

of their inherent structure. Furthermore, this is the first reconstruction procedure on the

dynamical structure function to operate in the time-domain, rather than the frequency

domain, in order to avoid the overhead and inaccuracies that could be introduced through

transformations.
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Dynamical structure functions, developed in [24], are a system representation that

denote the structure and dynamics of a linear time-invariant system at a resolution consistent

with the number of manifest variables. A system’s dynamical structure function details the

relationship among measured states denoted by the transfer function matrix Q(z), and the

relationship between inputs and measured states, denoted P (z), where z is a variable in the

frequency domain. The dynamical structure function of a system contains more information

about the structure of the system than the associated transfer function, G(z), which details

the input-output dynamics of the system and only contains structural information about the

manner in which inputs directly a↵ect measured states.

Rather than reconstruct the dynamical structure function, many existing algorithms

attempt to determine the state space representation of a system, (A,B,C,D), since it contains

all the structural details of the system, i.e. it defines how inputs a↵ect internal states, internal

states interact, inputs a↵ect outputs, and states a↵ect outputs. However, determining a state

space model of a system is an ill-posed problem that requires an extensive amount of a priori

knowledge about the system, beyond its input-output dynamics, in order to reconstruct [38].

Note that determining the dynamical structure function from input-output data is also an

ill-posed problem, but requires less a priori information to reconstruct than the system’s state

space realization [7], while having a stronger notion of structure than a system’s transfer

function.

In [73], a robust network reconstruction algorithm that determines the dynamical

structure function for systems with target specificity, i.e. systems in which each input

independently a↵ects a measured state, was developed. The algorithm was improved to run

in polynomial time in [28], before being extended to all reconstructible systems in [16], based

on identifiability conditions from [7]. These network reconstruction techniques for dynamical

structure functions, however, all were set in the frequency domain and all assumed that

experiments could be performed on the system. In particular, these works perturbed each
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input to actively probe the system and generate data informative enough to reconstruct its

network structure.

Algorithms that use passive network reconstruction methods were presented in [36]

and [29]; however, those were restricted to systems with target specificity, which requires

each input to independently perturb a unique measured state. The novelty of the algorithm

presented in this paper is that the target specificity restriction is removed which greatly

increases the applicability of the reconstruction procedure. Additionally, the procedure is

detailed in the time-domain in an attempt to circumvent potential inaccuracies that may be

introduced through transformations on the system.

The paper begins with the derivation of the dynamical structure function and details

the necessary and su�cient conditions required for network reconstruction of a system in

Section 7.1. Then in Section 7.2, the dynamical structure function definition is extended

from the frequency domain to the time domain. Section 7.3 details the main result, the

passive reconstruction algorithm using the time domain representation of the dynamical

structure function. Finally, in Section 7.4 an illustrative example of the network reconstruction

algorithm applied to a system with non-diagonal P (z), i.e. a system without target specificity,

is shown.

7.1 Background

In this section we derive the dynamical structure function representation of systems and

detail the necessary and su�cient informativity conditions for network reconstruction of the

dynamical structure functions, assuming no measurement or process noise in the system.
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7.1.1 Dynamical Structure Functions

This section gives an overview of the derivation of dynamical structure function. Consider

the state space system given by:

264 y[k + 1]

 [k + 1]

375 =

264A11 A12

A21 A22

375
264 y[k]

 [k]

375+

264B1

B2

375 u[k]

y[k] =


I 0

�264 y[k]

 [k]

375 .

(7.1)

Note that D = 0, while C =


I 0

�
which allows the variables to be separated into the

measured states, y, and the unmeasured states,  .

The next step is to take the Z-transform of the signals in (7.1). Assuming zero initial

conditions, we get:

264 zY (z)

z (z)

375 =

264A11 A12

A21 A22

375
264Y (z)

 (z)

375+

264B1

B2

375U(z) (7.2)

Solving for  (z), gives:

 (z) = (zI � A22)
�1 A21Y (z) + (zI � A22)

�1 B2U(z) (7.3)

Substituting (7.3) into the first equation of (7.2) then yields

zY (z) = W (z)Y (z) + V (z)U(z)

where

W (z) = A11 + A12 (zI � A22)
�1 A21
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and

V (z) = A12 (zI � A22)
�1 B2 +B1.

LetD(z) be a matrix with the diagonal terms ofW (z), i.e. D(z) = diag(W11(z),W22(z), ...,W
pp

(z)).

Then,

(zI �D(z))Y (z) = (W (z)�D(z))Y (z) + V (z)U(z)

Note that zI �D(z) is always invertible since D(z) is always proper. We then have:

Y (z) = Q(z)Y (z) + P (z)U(z) (7.4)

where

Q(z) = (zI �D(z))�1 (W (z)�D(z)) (7.5)

and

P (z) = (zI �D(z))�1 V (z) (7.6)

Note that since W (z) �D(z) is a hollow matrix (a matrix with zeros along the diagonal),

then Q(z) is also a hollow matrix.

The matrix Q(z) is a matrix of strictly proper transfer function from Y
i

(z) to Y
j

(z),

i 6= j relating each measured signal to all other measured signals. Likewise, P (z) is a matrix

of strictly proper transfer function from each input to each output without depending on any

additional measured state Y
i

(z). Together, the pair (Q(z), P (z)) is known as the dynamical

structure function of the system.

7.1.2 Necessary and Su�cient Informativity Conditions for Network Recon-

struction [7]

In order to detail the necessary and su�cient conditions for network reconstruction of the

dynamical structure function, we introduce the following notation. Let A 2 Cn⇥m and

B 2 Ck⇥l. Then:
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• blckdiag(A,B) =

264A 0

0 B

375,
• A�i

is the matrix A without its ith column,

• AT is the transpose of matrix A,

• R(A) is the range of A,

• �!a is the vector stack of the columns of A

• and  �a is the vector stack of the columns of AT .

In order to determine the conditions that are necessary and su�cient for the recon-

struction of the dynamical structure function from data, we construct a map of the elements of

the dynamical structure function to the associated transfer function, which can be determined

using system identification on input-output data. We begin by noting that the transfer

function, G(z), of the system in (7.1) is related to its dynamical structure, (Q(z), P (z)), by

the following equation

G(z) = (I �Q(z))�1P (z) (7.7)

which can be rearranged to get:


I G(z)T

�264P (z)T

Q(z)T

375 = G(z)T (7.8)

Now, note that

ĀX̄ = B̄ () blckdiag(Ā, ..., Ā)~̄x = ~̄b

and defining X(z) =

P (z)T Q(z)T

�
we can then rewrite (7.8) as


I blckdiag(G(z)T , ..., G(z)T )

�
�!x (z) = �g (z). (7.9)

184



www.manaraa.com

Since Q(z) is hollow, as noted in Section 7.1.1, we can abuse notation to redefine �!x (z)

to remove the columns that correspond to the zero elements, reducing Equation (7.9) to the

following:

L(z)�!x (z) = �g (z). (7.10)

where L(z) 2 Rpm⇥p

2�p+pm and

L(z) =

I blckdiag(G�1(z)T , G�2(z)T , ..., G�p

(z)T )

�
.

Identifiability conditions can then be established by determining which elements of

�!x (z) must be known a priori in order to reduce the relationship to an injective map. To

accomplish this, consider the matrix T̄ 2 Rp

2�p+pm⇥k such that

�!x (z) = T̄ h(z) (7.11)

where h(z) is an arbitrary vector of transfer functions.

Lemma 17. Given a system characterized by the transfer function G(z), its dynamical

structure function (Q(z), P (z)) can be identified if and only if

1. M(z) = L(z)T̄ is injective, i.e. rank(M(z)) = k, and

2.  �g (z) 2 R(M(z)).

Proof. The proof for Lemma 17 is given in [7].

7.2 Time-domain Representations of the Dynamical Structure Function

The dynamical structure function up to this point has only been defined in the frequency

domain in the literature. We now extend the system representation to the time-domain, which

is preferable for the development of the passive reconstruction algorithm. Previous network

reconstruction techniques in the literature required system identification procedures to occur
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before the reconstructive step. While this is not di�cult, the added layer of complexity could

lead to worse performance in the reconstruction algorithm, which is avoided by performing

the reconstruction procedure directly on the data.

7.2.1 Representations

Given the dynamical structure function of the form (7.4), taking the inverse Z-transform

yields

y
t

= Q
t

⇤ y
t

+ P
t

⇤ u
t

(7.12)

which we call the convolution representation of the dynamical structure function and where

⇤ is the convolution operator and y
t

is the output and u
t

is the output at time t.

Note that (7.12) can be written in the form of matrix multiplication:

ȳ
r

= Q̄
r

ȳ
r

+ P̄
r

ū
r

(7.13)

where ȳ
r

=


yT1 yT2 ... yT

r

�
T

, ū
r

=


uT

1 uT

2 ... uT

r

�
T

,

Q̄
r

=

266666666664

0 ... ... ...

Q1
. . .

Q2 Q1
. . .

...
. . . . . . . . .

Q
r

. . . . . .

377777777775
, P̄

r

=

266666666664

0 ... ... ...

P1
. . .

P2 P1
. . .

...
. . . . . . . . .

P
r

. . . . . .

377777777775
(7.14)

which we call the Toeplitz representation of the dynamical structure function.

As we will see in Section 7.3.2 stable systems result in matrices (Q̄
r

, P̄
r

) with entries Q
i

and P
i

that tend to zero as r !1. This fact allows us to approximate (Q̄1, P̄1) arbitrarily

well with matrices of finite dimensions.
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7.3 Main Result

Some previous reconstruction algorithms actively probe the system by constructing a sequence

of experiments that independently inject an appropriate signal (e.g. a step) at each input

(while holding all other inputs at zero) and measuring the entire system response [24, 73].

In situations where we have controlled access to the system inputs and can conduct such

experiments, this process may be a convenient way to generate data that is very informative

about the system’s network structure.

However, in some situations, we may not have the ability to actively perturb each

input. In these cases, the data obtained from observations of the system will not, in general,

be informative enough to reconstruct network structure. Nevertheless, there has been some

work where researchers have been willing to assume that the system is intrinsically perturbed

by independent stochastic processes acting on each input [29, 36], although these results

assume target specificity. Here, we drop the target specificity assumption, but do assume

that the inputs, though not controlled, are measured and provide a persistency of excitation

on the system to ensure the input-output data is rich enough for reconstruction.

7.3.1 Learning the Toeplitz Representation

The process of learning the Toeplitz representation in (7.13) is similar to learning the

frequency-domain dynamical structure function using the necessary and su�cient conditions

developed in [7]. First, we will extend those conditions from the frequency-domain to the

time-domain, then we will discuss how the amount of data we collect will a↵ect our estimate

of r in (7.13) and thus, our current understanding of the system’s structure and dynamics.
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Necessary and Su�cient Conditions for Time-Domain Network Reconstruction

Given (7.14), each Q
i

has p2 � p unknowns and each P
i

has pm unknowns, which means in

Q̄
r

and P̄
r

there are a total of (p2 � p+ pm)r unknowns. Now, take (7.13) to be rewritten as

ȳ
r

=


Q̄

r

P̄
r

�264ȳr
ū
r

375
Taking the transpose of both sides yields

ȳT
r

=


ȳT
r

ūT

r

�264Q̄T

r

P̄ T

r

375
Next, we can write:


yT1 ... yT

r

�
=


yT1 ... yT

r

uT

1 ... uT

r

�

2666666666666664

0 QT

1 ... QT

r

...
. . . . . .

...

0 ... 0 QT

1

0 P T

1 ... P T

r

...
. . . . . .

...

0 ... 0 P T

1

3777777777777775
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which is equivalent to the series of equations

yT1 = 0,

yT2 =


yT1 uT

1

�264QT

1

P T

1

375 ,

yT3 =


yT1 yT2 uT

1 uT

2

�
266666664

QT

2

QT

1

P T

2

P T

1

377777775
, etc.

Finally, defining

x̂ =


QT

1 ... QT

r

P T

1 ... P T

r

�
allows us to write (7.13) as

ŷ = L̂
�!
x̂

where L̂ 2 Rfp⇥(p2�p+pm)r, f is the number of data points collected, ŷ =


yT1 ... yT1 ... yT

f

... yT
f

�
T

,

and

hatL =

2666666666666666664

yT1 0 0 ... 0 0 0 uT

1 0 0 ... 0 0 0

0
. . . 0 ... 0

. . . 0 0
. . . 0 ... 0

. . . 0

0 0 yT1 ... 0 0 0 0 0 uT

1 ... 0 0 0

...
...

...
...

yT
f

0 0 ... yT1 0 0 uT

f

0 0 ... uT

1 0 0

0
. . . 0 ... 0

. . . 0 0
. . . 0 ... 0

. . . 0

0 0 yT
f

... 0 0 yT1 0 0 uT

f

... 0 0 uT

1

3777777777777777775
Now, given a static matrix

T̄ =

264T1 T2

T3 T4

375 ,
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representing the a priori information in the frequency domain, where T1 is the a priori

information about the system that indicates how the reduced elements of Q(z) map to the

original elements of Q(z), with T2 performing a similar function from the reduced elements

of Q(z) to the original elements of P (z), and so on.

Note that T̂ is the a priori information that maps the reduced element of each Q
i

and

P
i

for i = 1, ..., r to the unreduced elements of the appropriate matrices, and that the a priori

information applies to each Q
i

and P
i

in the same manner, yielding

T̂ =

2666666666666664

T1 ... 0 T2 ... 0

...
. . .

...
...
. . .

...

0 ... T1 0 ... T2

T3 ... 0 T4 ... 0

...
. . .

...
...
. . .

...

0 ... T3 0 ... T4

3777777777777775
(7.15)

Note if T̄ is not static, T̂ is determined from the inverse Z-transform of T̄ .

This leads us to the necessary and su�cient conditions for passive reconstruction:

Theorem 16. Given a system characterized by the transfer function G, its dynamical

structure function (Q,P ) can be identified in the time domain if and only if

1. M̂ = L̂T̂ is injective, i.e. rank(M̂) = kr,

2. ŷ 2 R(M̂), and

3. r chosen su�ciently large.

Proof. This follows directly from the results of Lemma 17, where T̂ is constructed by iteratively

applying T̄ to the entries Q
i

and P
i

for i = 1, ..., r as shown in (7.15) if T̄ is static. If T̄ is

dynamic, T̂ is constructed by taking the inverse Z-transform to get T
t

and then applying

each T
i

to Q
i

and P
i

for i = 1, ..., r.
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Incremental System Understanding

Here we discuss the notion of choosing r su�ciently large, specifically looking at the Boolean

structure in terms of
P

r

i=0 Qi

from reconstructed Toeplitz representation for small values of

r. This will help us inform our understanding of why part 3 of Theorem 16 is a necessary

condition in the time domain.

Example 17. Consider a system S where the a priori information required for reconstruction

is the Boolean structure of P (z). In this scenario, the Boolean structure of

Q(z) =

266664
0 0 1

1 0 0

0 1 0

377775 ,

but this information is unknown a priori.

Using the necessary and su�cient conditions for reconstruction without r chosen

su�ciently large yields the following Boolean structures

r 2 5 28 120

Q
bool

266664
0 1 1

1 0 1

1 1 0

377775
266664
0 1 1

1 0 0

1 1 0

377775
266664
0 0 1

1 0 0

1 1 0

377775
266664
0 0 1

1 0 0

0 1 0

377775
(7.16)

Note that although r = 120 yields the smallest r required to determine correct Boolean

structure, a larger r value may be necessary in order to learn the correct dynamics of the

system.

This example illustrates that the reconstruction procedure improves gradually as more

data is collected from the system.
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7.3.2 Learning the Convolution Representation

Given the Toeplitz representation of the dynamical structure function, the convolution

representation can then be determined. First, it is necessary to determine the delays on each

link. Assuming zero initial conditions, the number of time steps it takes for a link in Q(z)

or P (z) to become non-zero is the definition of the delay on the link. This means that the

first non-zero element of the (̂i, ĵ)th entry in Q
k̂

or (̄i, j̄)th in P
k̄

, for some k̂, k̄ 2 (1, ..., r), the

delays on the links are given by w(̂i,ĵ) = k̂ or w(̄i,j̄) = k̄, respectively. If there are no non-zero

elements, then no link exists. Given the links, we then attempt to learn the functions of the

respective links in the time-domain, the form of which is derived in Theorem 17.

Theorem 17. Given that

Q(z) = (zI �D(z))�1(A12(zI � A22)
�1)A21 + A11)

and

P (z) = (zI �D(z))�1(A12 (zI � A22)
�1 B2 +B1)

the entries of the corresponding inverse Z-transform will have the form

a
k

�
t,0 +

w

kX
i=0

b
i

(c
i

)t (7.17)

where w
k

is the number of delays in the corresponding link.

Proof. Consider the definition of the inverse Z-transform which states

x[t] = Z�1{X(z)}

= 1
2⇡i

H
C

X(z)zt�1dz

=
P

[Residues of X(z)zt�1 at the poles of X(z)].
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The residue of X(z) at the pole z0 is denoted

Res(X(z), z0) = X(z)(z � z0)|z0 .

Since they are strictly proper transfer function matrices, the entries of Q(z) and P (z)

can be written as the sum of partial fractions of the form ↵

i

z��

i

. Then, defining

H
j,k

(z) = Q
j,k

(z)zt�1

implies

H
j,k

(z) =
wX
i=0

↵
i

zt�1

z � �
i

The sum of the residues is then evaluated as

P
w

i=0 Res(
j,k

(z), �
i

) = ↵
i

zt�1|
�

i

= ↵
i

�t�1
i

= ↵

i

�

i

�t

i

This gives us b
i

= ↵

i

�

i

and c
i

= �
i

, 8i 2 (0, w). Assuming zero initial conditions then yields

a = �
P

w

i=0 bi.

Given the form in Equation (7.17) which represents the entries in Q
t

and P
t

, we can

then determine each entry by fitting toegther the Q
i

’s or P
j

’s using a nonlinear least squares

algorithm. This process can be done in MATLAB using a custom curve fit. In order to tune

the fitting process, we used the following heuristic:

1. Step 1: Change the default maximum function evaluations of the model and maximum

amount of iterations to 2r and attempt to fit the parameters.

2. Step 2: If a solution is not found, iterate through all possible maximum function

evaluations and maximum amount of iterations from v = 1, ..., 3r.
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3. Step 3: If a solution is still not found, then randomly change the start point of the

fitting algorithm and repeat Steps 1 and 2 until a solution is found or a stopping

condition is met, using the best solution so far.

7.3.3 Finding the Dynamical Structure Function

Once the convolution representation has been determined, take the Z-transform of Q(t) and

P (t) to get the dynamical structure function Q(z) and P (z), which is the output of the

algorithm.

7.4 Numerical Example

The following example reconstructs a dynamical structure function, (Q,P ), with non-diagonal

P , to illustrate that this method can reconstruct systems without target specificity in the

time-domain that were not previously reconstructed in this manner.

Example 18. (Non-Diagonal P) Consider the following stable state space system:

x[k + 1] =

2666666666666664

.75 0 0 0 0 1.2

�.1 �.35 0 0 0 0

0 0 .85 �1 0 0

0 �.73 0 .95 0 0

0 0 .43 0 �.6 0

0 0 0 0 .2 .55

3777777777777775
x[k] +

2666666666666664

1.4 0 �1.4

0 �.25 0

0 0 .75

0 0 0

0 0 0

0 0 0

3777777777777775
u[k]

y[k] =

266664
1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

377775 x[k]

(7.18)
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the corresponding dynamical structure function is

Q(z) =

266664
0 0 41.28

(4z�3)(5z+3)(20z�11)

�2
20z+7 0 0

0 292
(20z�17)(20z�19) 0

377775 , P (z) =

266664
5.6
4z�3 0 �5.6

4z�3

0 �5
20z+7 0

0 0 15
20z�17

377775 (7.19)

The corresponding transfer function is full, so it does not detail any internal structure, only

that all the inputs a↵ect all the outputs, even though the system has a clear ring structure, as

seen in Figure 7.1.

Figure 7.1: The structure of the dynamical structure function of the system in (7.18). Light
nodes represent inputs and dark nodes represent measured states, with links representing
causal dependencies among the manifest variables.
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The convolution representation of the dynamical structure function, rounded to three

decimal places, is then given by

Q(t)[1, 3] = .51(.75)t � .11(�.6)t � .816(.55)t + .416�

Q(t)[2, 1] = .286(�.35)t � .286�

Q(t)[3, 2] = 7.684(.95)t � 8.588(.85)t + .904�

P (t)[1, 1] = 1.867(.75)t � 1.867�

P (t)[1, 3] = �P (t)[1, 1] = �1.867(.75)t + 1.867�

P (t)[2, 2] = .714(�.35)t � .714�

P (t)[3, 3] = .882(.85)t � .882�

(7.20)

where � represents the Kronecker delta �(t,0). This example uses the passive reconstruction

method to reconstruct the dynamical structure function of the system in Equation 7.18 using

simulated data and no noise. Note that P (t)[1, 3] = �P (t)[1, 1] is part of the a priori

information used to ensure that the system is reconstructible.

For this example we chose r = 600, noting that the longest decay (slowest dynamics)

is only around 150 time steps. Typically r should be chosen so as to overestimate the actual

decay of the system, as in this case. 2000 data points were collected, and the reconstruction

fits are shown in Figure 7.2. The number of data points was chosen because, after being

reduced for a priori information, the system has 9 unknowns in Q(z) and P (z), which means

there are 9 unknowns in each of the (Q
i

, P
i

) pairs. This means that the matrix M̂ , Theorem

16, will have 5400 columns, which comes from k = 9 and r = 600. In order to achieve full

column rank for M̂ we need at least that many rows, which is why at least f = 1800 data

points are required to reconstruct the system given that p = 3.
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(a) Reconstructed Entries from Q (b) Reconstructed Entries from P

Figure 7.2: Each figure corresponds to an unknown entry in Q and P , with order as in (7.20).
The line in each represents the simulated results of the corresponding equation. The dots
represent the reconstructed values of each unknown entry.
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Using the described fitting process, we can determine the entries of the convolution

representation of the dynamical structure function to be:

Q(t)[1, 3] = .5096(.75)t � .1108(�.6)t � .8158(.55)t + .417�

Q(t)[2, 1] = .2839(�.3556)t � .2839�

Q(t)[3, 2] = 7.684(.95)t � 8.588(.85)t + .904�

P (t)[1, 1] = 1.867(.75)t � 1.867�

P (t)[1, 3] = �P (t)[1, 1] = �1.867(.75)t + 1.867�

P (t)[2, 2] = .7143(�.35)t � .7143�

P (t)[3, 3] = .8824(.85)t � .8824�

(7.21)

which is almost exactly the same as the actual convolution representation in Equation 7.20.

This example shows it is possible to reconstruct a system without target specificity in the

time-domain without active experiments.

7.5 Conclusion

This paper presents a passive network reconstruction algorithm, allowing for the structure

and dynamics of a system to be determined directly from input-output data without the need

for multiple experiments and removing the restriction of target specificity that plagues many

similar reconstruction methods. Furthermore, an illustrative example showed the e↵ectiveness

of this procedure on a system without target specificity. Future work will focus on ensuring

the algorithm is robust to measurement and process noise.

7.6 Appendix: Passive Reconstruction with Unmeasured Inputs

Here we demonstrate a method for passive reconstruction of systems without measuring

inputs into the system. For notational simplicity, we revert back to the frequency domain for

this explanation, but a similar result can be developed in the time domain. We start with the

relationship Y = (I �Q)�1PU , if U is unmeasured we can replace it with a variable  to
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represent that inputs into the system are unknown, i.e. Y = (I �Q)�1P . This relationship

can be rewritten as

Y = QY + P 

Rewriting the sum as a matrix multiplication yields

Y =


Q P 

�264Y
I

375
Next, we take the transpose of both sides

Y T =


Y T I

�264 QT

(P )T

375
Stacking vectors yields

�!y =


I blckdiag(Y T

�1, Y
T

�2, ..., Y
T

�p

)

�
�!x (7.22)

where X =


QT (P )T

�
.

In order to complete the reconstruction procedure, there are two important things to

note about (7.22):

1. Solving for the unknowns, we must introduce a priori information about the system.

This a priori information for unmeasured inputs is not the same as the necessary and

su�cient conditions for reconstruction with measured inputs. However, it should be

clear that P diagonal is a su�cient condition for reconstruction.

2. Although the structure and dynamic of Q can be learned from this process, it is not

immediately evident whether or not the structure and dynamics of P can be determined,

further investigation of this issue is necessary.
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Chapter 8

Vulnerability Analysis for Distributed and Coordinated Destabilization Attacks

(Published at CDC 2014)

Abstract

This paper focuses on how the vulnerability of an LTI system to destabilizing attacks can be

posed as its robustness to external disturbances. First, we extend existing work on single link

attack models to a more generalized attack model that allows for multiple link attacks. This

is done by extending the partial structure representation of dynamical structure functions to

include external perturbations. Given the new model, we then discuss how to determine the

vulnerability of the system for both coordinated and distributed destabilizing attacks on a

system. Finally, we develop a separability result for vulnerability in feedback systems that

will be useful in determining secure architectures for structured controller design.
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8.1 Introduction

A variety of systems–such as power grids, water supplies, and transportation networks–can

be modeled by a network of physical and cyber components. Many of these infrastructures

are critical to maintaining public health and safety and it is necessary that these systems are

resilient to both malicious attacks and accidental outages. Measuring the vulnerability of

these systems to an attack or an unplanned outage will help to design a more robust network

infrastructure.

In general, malicious attacks are usually directed towards the most sensitive parts of

a system in order to increase the amount of damage they can cause with minimum e↵ort.

Attacks can take many shapes and forms, such as physical or cyber attacks against a system.

Certain attacks or unplanned outages can cause cascading failures across numerous systems

[62]. For example, a software bug caused what is now known as the North-east blackout of

2003. This bug blacked out several large regions of the United States and Canada for up

to two days. Backup generators failed, water pressure in several cities fell, phone systems

became non-operational, and major water networks were contaminated as a result [10].

The recent economic crisis has also been compared to a blackout in a power grid. The

comparisons claim that a small change within the global economic network–specifically a rise

in the default rates on mortgages–led to a cascading failure throughout the entire economic

network much like a downed power line can lead to cascading failure within a power grid [52].

Each of these examples demonstrate how a local disturbance can cause global cascading

failure throughout a networked system. Networked systems should be designed to be robust

to such disturbances, especially if the disturbances could be malicious attacks. Designing

systems to be robust requires models of both the system being attacked as well as the method

of the attack itself. We now explore a framework of attack models which will be useful in

discussing the vulnerability of LTI systems in particular.
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8.1.1 Attack Models and Scenarios

The work in [64] introduces a framework by which attack scenarios may be classified. The

elements of an attack may include:

• Attack Goals: The purpose or intent of the attack which can be stated as the impact of

a successful attack on a system. This purpose may be to steal information, change the

state of the system, destabilize the system, etc.

• Attack Policy: The mechanism by which the attacker executes the attack. This policy

is characterized as a point in a three dimensional attack space, where the dimensions

are defined as follows:

– System Knowledge: The scope of knowledge about the system available to the

attacker before the attack begins.

– Disclosure Resources: The set of states that can be measured by the attacker

during the attack.

– Disruption Resources: The set of states that can be modified or controlled by the

attacker during the attack.

• Additional Constraints: Any other constraints on the attack. For example, one could

consider a stealthiness constraint on many attacks which further limits the amount of

resources available to the attacker and the size of the attack is unobservable to the

system.

Equipped with this framework, we can categorize several types of well-known attacks.

8.1.2 Deception Attacks

Deception attacks define a class of attack models that have recently received wide attention.

Within the framework outlined above, deception attacks can be classified as attacks which

are executed with the intent to provide false information to authorized sources [63].
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8.1.3 Denial of Service Attacks

Denial of service attacks are characterized as attacks where disruption resources available

to the attacker include the ability to disrupt communication between states in the system.

These types of attacks may serve several purposes such as the destabilization of the system

or a degradation the system’s performance [69].

8.1.4 Destabilization Attacks

The primary focus of this work is on a system’s vulnerability to destabilization attacks. The

purpose of destabilization attacks is to create local disturbances on a network system in order

to cause global cascading failures [45].

One specific attack that has recently received wide attention is Stuxnet, in large part

due to the fact that, unlike many of the attacks and attack models studied in the past, the

purpose of Stuxnet was not to steal, manipulate, or erase information; rather, it was intended

to destroy physical systems, which it achieves by changing the input seen by the controllers

on these physical systems [35]. Since Stuxnet causes global failure to these systems by making

small changes to the controllers on these systems, it can be modeled as a destabilization

attack.

For the purposes of this paper, destabilization attacks do not involve stealthiness

constraints; however they will assert that the system knowledge as well as the disclosure

resources available to the attacker are constrained to manifest or exposed states. Further, we

only consider destabilization attacks on causal, linear time invariant (LTI) systems.

8.2 Background

We begin by discussing the methodology used throughout the paper for calculating the

vulnerability of a link to a given attack model. The main results of this paper are developed

using the dynamical structure function (DSF) representation, which is a partial structure

representation of the system. We then motivate the use of the DSF representation for
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vulnerability analysis of destabilizing attacks and discuss previous work already conducted in

this area on single link destabilization attacks. Note that a link in the dynamical structure

function represents a causal relationship between either two measured states or an input and

a measured state in the state space representation of the system, possibly through hidden

states.

8.2.1 Methodology for Vulnerability Analysis

Vulnerability analysis begins by deciding which system variables are potentially exposed to

attack. The DSF, described in detail in Section 8.2.2, is then used to model the system in

terms of these exposed variables.

An attack model specifies which exposed variables the attacker can measure and which

they can a↵ect. The system vulnerability with respect to this attack is calculated via the

small gain theorem to determine how the attacker has to work to destabilize the system from

its current position. The small gain theorem is applied by determining the transfer function

matrix M that is in feedback with the attack � (see Figure 8.1).

8.2.2 Dynamical Structure Functions

The DSF representation was first developed in [24] and represents the relationship among

exposed variables in a system. Given a state space representation of the form:

264ẏ
ż

375 =

264A11 A12

A21 A22

375
264y
z

375+

264B1

B2

375 u

y =


I 0

�264y
z

375

where we note that C =


I 0

�
because we partition the states into the exposed states, y, and

hidden states, z.
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Figure 8.1: Modeling attacks as a destabilizing perturbation to a system model built around
exposed variables enables standard robustness analysis to define a meaningful notion of
vulnerability. The figure shows a single-link attack, resulting in a Single Input Single Output
� block, but the methodology is similar if the attacker has access to more exposed variables,
making � Multi Input Multi Output (in general). The structure of � then characterizes
decentralized attacks (diagonal structure) from coordinated attacks (full-block structure).

The associated DSF (Q,P ), as shown in [24], is:

Y = QY + PU (8.1)

where Y and U are the Laplace transforms of y and u. Also, Q is a hollow matrix that

describes how exposed states a↵ect other exposed states, while P is a matrix that describes

how inputs a↵ect exposed states.

The relationship given in (8.1) details the structure between the exposed variables,

which is the structure of the system that is most likely to be visible to an external attacker

and highlights which variables an attacker can a↵ect in the system. Therefore, the DSF is a

useful representation for calculating the vulnerability of links to destabilization attacks.
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8.2.3 Single Link Attack

From [45] we learn that a stable additive perturbation � on a link Q
ij

or P
ij

is able to

destabilize the system if and only if the transfer function, M
ij

, seen by � is nonzero. This

means that the link Q
ij

or P
ij

is in feedback with some series of links in Q or P . Note that

M
ij

is the transfer function from �Y
j

to Y
j

. From this result we can conclude that, for

open-loop systems, links in the matrix P are never vulnerable to this type of an attack, so

only links in Q are potentially vulnerable.

The vulnerability of a single link in Q is then defined to be the inverse of the

smallest perturbation required to destabilize the system. So a large perturbation means the

vulnerability is low and vice versa. By application of the small gain theorem, we note that

the system will remain stable as long as ||�||1||M
ij

||1 < 1.

Therefore, the smallest perturbation necessary to destabilize the system occurs when

||�||1||M
ij

||1 = 1

which means

||�||1 =
1

||M
ij

||1

Thus, the vulnerability of a link Q
ij

is

v
ij

= ||M
ij

||1

The overall vulnerability, V , of the entire system to single link attacks can then be

defined as the largest vulnerability of any single link, looking across all links in the system;

i.e.

V = max
Q

ij

6=02Q
v
ij
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8.3 State Space Attack Model

The analysis of the vulnerability of a single link to a destabilizing attack can then be extended

to a more general model incorporating simultaneous attacks on multiple links. We begin by

formulating this model using the state space representation of LTI systems.

We model an attack on a network system as an external disturbance F to the system

to get:

ẋ = Ax+Bu+ F 

y =


I 0

�
x

(8.2)

As noted in Section 8.1, the purpose of the attack is to destabilize the system using a

well-defined set of disclosure and disruption resources. Restricting ourselves to the class of

stable systems we can see that a bounded input will create a bounded output, so the system

can not be destabilized by a stable external disturbance, so we restrict ourselves to the case

where  = x.

With  = x an attacker is allowed to artificially create a link connecting state x
i

to

state x
j

; moreover, if F = B we can artificially create a link from a state x
i

to an input

u
j

. Allowing the attacker to create links that have feedback with existing links has negative

implications for the overall vulnerability of the system. This is discussed in more detail in

Section 8.4.1.

For many attack models, a reasonable restriction may be that the attacker is only

allowed to use the existing system infrastructure. Therefore, we can restrict this attack model

such that if a
ij

= 0, then �
ij

= 0. We can restrict the attacker further to only allow attacks on

exposed states. For this restricted class of attacks, a more useful representation of a system

is the DSF. Therefore, our next step is to formulate a generalized attack model in the DSF

framework before adding these restrictions.
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8.4 A Generalized Attack Model using the Dynamical Structure Function Rep-

resentation

In order to define a generalized attack model in the DSF domain, we first need to define the

DSF of a system when external disturbances are present. We rewrite (8.2) to be a state space

system of the form

264ẏ
ż

375 =

264A11 A12

A21 A22

375
264y
z

375+

264B1

B2

375 u+

264F1

F2

375 
y =


I 0

�264y
z

375
(8.3)

Taking the Laplace transform of (8.3) yields

264sY
sZ

375 =

264A11 A12

A21 A22

375
264Y
Z

375+

264B1

B2

375U +

264F1

F2

375 (8.4)

where Z and  are the Laplace transforms of z and  , respectively.

Solving for Z in the second equation of (8.4) gives us

Z = (sI � A22)
�1A21Y + (sI � A22)

�1B2U + (sI � A22)
�1F2 (8.5)

Plugging (8.5) into the first equation in (8.4) then gives us

sY = WY + V U +N (8.6)

withW = A11+A12(sI�A22)�1A21, V = B1+A12(sI�A22)�1B2, N = F1+A12(sI�A22)�1F2

Finally, defining D = diag(W11, ...,Wpp

) subtracting DY from both sides of (8.6) we

get

Y = QY + PU +� (8.7)
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where Q = (sI �D)�1(W �D), P = (sI �D)�1V , and � = (sI �D)�1N .

Equation (8.7) is then a generalized attack model in the DSF domain.

8.4.1 Calculating Vulnerability from a Generalized Attack Model

The class of attacks we focus on in this paper is the class of destabilizing attacks, which

in turn can be split into two classes of attacks: the first in which the attacker can create

communication links in a network and the second in which the attacker must use the existing

communication links.

If we allow an attacker to create links in a system then it is possible for an attacker to

create a feedback loop in any system. And as shown in Section 8.4.2, this feedback loop will

create a vulnerability within the system. Therefore, under this assumption, no completely

secure architecture can exist. For this reason and from this point forward, we only consider

attack models that use the existing communication structure to conduct an attack. This is

not an unreasonable assumption since creating new links within a system may be a di�cult

or expensive task for an attacker.

Vulnerability of a Single Link Attack

Starting with (8.7) and solving for Y in terms of U and  we get

Y = (I �Q)�1PU + (I �Q)�1� (8.8)

where the input-output relationship is given by G = (I �Q)�1P and the transfer function

describing how  a↵ects the exposed states, Y , is (I � Q)�1�. Given that we are only

considering stable systems, we know that no bounded input can destabilize the system.

Therefore, we consider the case when  = Y , which means that an attacker is using some

combination of additive perturbations on existing links to destabilize the system.
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The transfer function seen by a perturbation �Y is then given in (8.8) as (I �Q)�1.

In particular, if we want to determine the vulnerability of a single link attack on a link Q
ij

,

we know this can be modeled as �
ij

= (sI �D
ii

)�1N
ij

with the rest of the entries in � equal

to zero. Then, the transfer function seen by the perturbation on the link Q
ij

is found from

2666666666666666664

Y1

...

Y
j�1

Y
j

Y
j+1

...

Y
p

3777777777777777775

= H

2666666666666666664

0

...

0

�
ij

Y
j

0

...

0

3777777777777777775

(8.9)

where H = (I � Q)�1. From (8.9), we can see that Y
j

= H
ji

�
ij

Y
j

since �
ij

Y
j

is in the ith

row of the vector given in (8.9). Therefore,

v
ij

= ||H
ji

||1

which means that

V = max
Q

ij

6=02Q
||H

ji

||1 (8.10)

Vulnerability of a Multiple Link Distributed Attack

We now consider an attack in which multiple attackers are simultaneously performing unique

single link attacks in the system and are not sharing information. This is modeled by the

concatenation of several single link attacks on the system and by application of the small

gain theorem, the vulnerability, v
ij,...,kl

of this type of an attack is the structured singular
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value, µ
ij,...,kl

, of the matrix

R
ij,...,kl

=

266666664

H
ji

0 ... 0

0
. . . . . .

...

...
. . . . . . 0

0 ... 0 H
lk

377777775
(8.11)

That is,

v
ij,...,kl

= µ(R
ij,...,kl

,⇧)

The overall vulnerability of the system of a distributed attack is

V = max
R

links

2R
µ
links

where R is the set of matrices of the form (8.11) over the set of all possible combinations of

links, L , and µ
links

is the structured singular value of R
links

.

Vulnerability of a Multiple Link Co-ordinated Attack

A multiple link coordinated attack is a generalizaation of a single link attack and is

similar to a distributed attack, except that it models either communication between multiple

attackers or a single attacker targeting multiple links. The transfer function seen by a

perturbation on multiple links when allowing for communication in the attack is then given

by

T
ij,...,kl

=

266664
H

ji

... H
li

...
. . .

...

H
jk

... H
lk

377775 (8.12)
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In this case, we find the vulnerability to be

v
ij,...,kl

= ||T
ij,...,kl

||1

Thus the overall vulnerability of the system of a co-ordinated attack is then given by

V = max
links2L

||T
links

||1

8.4.2 Reducing Vulnerability in Open-Loop Systems

Since the vulnerability of any given link in a system is the transfer function seen by a

perturbation on that link the vulnerability of the system is nonzero if and only if feedback

exists within the system. Therefore, one completely secure architecture is one in which no

links in Q exist.

Note that since G = (I � Q)�1P , when Q = 0, then P = G. Since links in P are

never in feedback for open-loop systems in which attackers cannot create links, they are never

vulnerable. Thus the overall vulnerability of a system with Q = 0 is V = 0, meaning there

does not exist a finite additive perturbation on a link in the system that can destabilize the

system under the assumption that the attacker can only use the existing communication

network of the system [45].

However, if an attacker is allowed to create arbitrary links within the system, any

system with at least one link will be vulnerable since the attacker can create a link in feedback

with the existing link.

8.5 Feedback Systems

Although completely secure systems can be created by removing all feedback from the system,

in many situations, feedback is a necessary component of the design of the system and cannot
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be removed. For example, an unstable system can be stabilized through a controller connected

in feedback.

Throughout this section, we will refer to feedback systems as an autonomous system

containing a plant with behavior G such that Y = GU and a controller with behavior K

such that U = KY , and where G 6= K�1. Note that the plant and the controller may each be

stable or unstable; however, we only consider the cases where the combined feedback systems

are BIBO stable.

8.5.1 Feedback Systems as a Dynamical Structure Functions

For a feedback system, we consider an attack  which may attack either the plant or the

controller. Again, we are only considering stable systems and since no bounded input can

destabilize a stable system, we only consider the case where  =


Y U

�
T

.

Let the structure of G be given by (P
g

, Q
g

) and consider a general attack �
g

 =
�11 �12

�
 on the plant. Then, from (8.7), we get

Y = Q
g

Y + P
g

U +


�11 �12

�
 .

Similarly, let the structure of K be given by (P
k

, Q
k

) and consider a general attack �
k

 =
�21 �22

�
 on K. Then

U = Q
k

U + P
k

Y +


�21 �22

�
 .
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Combining these equations, we get

264U
Y

375 =

264Qk

P
k

P
g

Q
g

375
264U
Y

375+

264�11 �12

�21 �22

375 
, Q

c

264U
Y

375+�
c

 (8.13)

The combined system in (8.13) is a DSF; therefore we can perform a vulnerability

analysis on Q
c

in the same manner as before. Note that the links in P
k

and P
g

are now

in the Q of the combined system; therefore, it is possible for these links to have a nonzero

vulnerability. We can also define �11 as an attack on Q
k

, �12 as an attack on P
k

, and so

forth.

8.5.2 Separability in Feedback Systems

One property of vulnerability within feedback systems is the notion of separability. We define

separability as follows:

Definition 24. Consider all potential multiple link coordinated attacks on a controller (of

which single link attacks are a subset). The vulnerability analysis on attacks in the controller

are considered separable from the plant if the computation of the vulnerability of any and all

attacks in the controller depends only on the behavior G of the plant and not on the structure

(P
g

, Q
g

) of the plant.

Note that we can make a similar definition for the separability of vulnerability of the

links in the plant from the controller. Equipped with this definition, we can then show the

conditions under which multiple link coordinated attacks allow for separability.

Theorem 18. The vulnerability analysis of the controller resulting from any arbitrary multiple

link coordinated attack is separable from the plant if and only if the attack does not include

214



www.manaraa.com

an attack on the plant. In other words, the vulnerability analysis of the controller is separable

from the plant if and only if �21 and �22 are zero.

Proof. Let Q
k

and �11 be size p⇥ p. Also let P
k

, K, and �12 be size p⇥m. Consider also

H
c

= (I �Q
c

)�1 =

264�1 �2

�3 �4

375. Then we have

264(I �Q
k

) �P
k

�P
g

(I �Q
g

)

375
264�1 �2

�3 �4

375 =

264I 0

0 I

375 .

Thus

(I �Q
g

)�3 � P
g

�1 = 0,

�3 = (I �Q
g

)�1P
g

�1 = G�1,

(I �Q
k

)�1 � P
k

�3 = I,

(I �Q
k

)�1 � P
k

G�1 = I,

�1 = (I �Q
k

� P
k

G)�1

= ((I �Q
k

)� (I �Q
k

)KG)�1

= ((I �Q
k

)(I �KG))�1

= (I �KG)�1(I �Q
k

)�1,

�3 = G�1 = G(I �KG)�1(I �Q
k

)�1

By similar logic, we can find �2 and �4, resulting in

H
c

= (I �Q
c

)�1 =264 (I �KG)�1(I �Q
k

)�1 K(I �GK)�1(I �Q
g

)�1

G(I �KG)�1(I �Q
k

)�1 (I �GK)�1(I �Q
g

)�1

375 (8.14)

It can be shown that �1 is size p⇥ p and �3 is size m⇥ p.
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From (8.12), we have that the vulnerability of this attack will be V = max
links2L kTlinks

k1,

where each entry with label {H
c

}
ji

corresponds to a nonzero attack �
ij

.

Assume that an arbitrary attack occurs only on the controller. Then we have that

every entry in �21 and �22 is zero and all nonzero entries �
ij

2 � will exist where i  p.

Thus all entries with label {H}
ji

in T
links

are taken from the first p columns of H
c

. Since

the width of �1 and �3 is p, we have that V is dependent only on �1 and �3. And since �1

and �3 are dependent only on G, K, and Q
k

, we have that the vulnerability of this attack is

independent from the structure of the plant.

Now assume that the computation of vulnerability depends on Q
g

. Then, from (8.14),

at least one of the entries of T
links

must be in �2 or �4. Also, because (I �Q
g

)�1 is full rank,

at least one entry in each of �2 and �4 must be nonzero. Without loss of generality, assume

that this entry is {�2}11. Since �1 has width p, {�2}11 = {H
c

}1,(p+1). The corresponding

attack that would lead to this requires that �(p+1),1 6= 0. And since �11 has height p,

�(p+1),1 = {�21} 6= 0; therefore, there exists a nonzero attack on the plant that depends on

Q
g

.

Corollary 4. The vulnerability analysis of the plant resulting from any arbitrary multiple link

coordinated attack is separable from the controller if and only if the attack does not include

an attack on the controller.

Proof. This follows by switching the roles of the plant and the controller in Theorem 18.

Recall that single link attacks are a special case of multiple link coordinated attacks;

therefore, when considering single link attacks on the controller, by Theorem 18, the vul-

nerability analysis on links in the controller are guaranteed to be separable (and a similar

statement can be said about the plant).

216



www.manaraa.com

8.5.3 Design Questions for Minimizing Vulnerability in Feedback Systems

As with open-loop systems, we consider the problem of minimizing the vulnerability of

feedback systems. In particular, we hold the input-output behavior G and K of our plant and

controller constant and then seek to change the structures (P
g

, Q
g

) and (P
k

, Q
k

) of the plant

and the controller in order to minimize the vulnerability of the combined feedback system. To

date, this problem remains unsolved. However, separability may provide important insights

into the solution for this problem.

For simplicity through this discussion, we consider only single link attacks; therefore,

separability is guaranteed in all cases. Note, however, that the implications analyzed within

this discussion will extend to multiple link attacks so long as each attack is restricted to only

attacking the plant or only attacking the controller.

The vulnerability of the combined system is then defined as the most vulnerable

link within the combined system. We also define the vulnerability of the controller as the

vulnerability of the most vulnerable link within the controller after it is connected in feedback

to the plant (and we define the vulnerability of the plant in a similar manner).

Given these definitions, separability shows the following:

• The structure (P
k

, Q
k

) of the controller can be freely changed without inadvertently

increasing the vulnerability of the plant.

• The structure (P
k

, Q
k

) of the controller cannot be changed in order to reduce the

vulnerability that exists within the plant.

Consider now a sub-problem to the problem above where we hold (P
g

, Q
g

) constant.

Separability shows that, when minimizing vulnerability, the following scenarios may occur:

• We find a structure (P
k

, Q
k

) of the controller such that the vulnerability of the controller

is the vulnerability of the plant. Then there is nothing more we can do to minimize the

vulnerability of the combined system; the vulnerability is locked at the vulnerability of

217



www.manaraa.com

the plant. In this case, a better problem may be to minimize the vulnerability of the

controller rather than minimizing the vulnerability of the combined system.

• We find that there exists no structure (P
k

, Q
k

) of the controller such that the vulnera-

bility of the controller is less than the vulnerability of the plant. Then the vulnerability

of the least vulnerable controller will be the minimum vulnerability of the combined

system.

8.6 Conclusion

In conclusion, we have developed a generalized attack model in the dynamical structure

function domain that can handle a multitude of attack vectors including accidental failures

in a system. Using this model we showed how to calculate the vulnerability of a system

for destabilizing attacks on a networked system. In future work we plan to determine the

vulnerability of systems in the face of other attack models, including state hijacking, which

looks at how bounded inputs can change state trajectory without destabilizing the system,

and inference threats, where an attacker does not a↵ect the system, but can listen to tra�c

along communication links.

Furthermore, we also noted that to reduce the vulnerability of a system in the face of

destabilization it is necessary to remove all feedback from the system, thus the only secure

architecture across all models for attacks that use existing communication links occurs when

Q = 0. Finally, we noted that for cases when removing feedback is impossible, there is a

principle of separability in which the computation of vulnerability for attacks on the controller

is separable from the structure of a plant when the plant or controller are not attacked

simultaneously. This result will hopefully lead to a method for minimizing vulnerability in

systems where feedback is essential, which will be explored in future work.
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Chapter 9

Conclusions and Future Work

9.1 Contributions

The primary goal of this thesis was to understand the process of network inference for linear

time invariant systems. We established a theory of structure for dynamical systems, detailed

relationships between di↵erent notions of structure, and developed applications for network

reconstruction.

9.1.1 Theory

The theoretical contributions of this work were as follows:

1. Expanded the definition of the dynamical structure function to the class of all linear

time invariant state space models.

2. Generalized necessary and su�cient conditions for identifiability of the dynamical

structure function to any linear time invariant system.

3. Established a methodology for comparing network semantics of various system repre-

sentations which demonstrated that the subsystem structure and signal structure are

distinct representations.

4. Developed necessary and su�cient conditions for the identifiability of a class of struc-

tured linear fractional transformation and showed that the cost of reconstruction of the

dynamical structure function is always less than or equal to the cost of reconstruction

of the structured linear fractional transformation.
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9.1.2 Applications

The applications discussed in this work were as follows:

1. Detailed a robust polynomial reconstruction algorithm for all systems, both target

specific and non-target specific, with lower computational complexity than current

algorithms.

2. Developed a passive, time-domain, reconstruction algorithm of the dynamical structure

function, previous algorithms were all developed in the frequency domain.

3. Used the dynamical structure function to represent the attack surface of a system and

extended previous vulnerability results from single link attacks to multiple link attacks,

both coordinated and uncoordinated.

9.2 Future Work

Although much work has been done in the literature to study linear systems and the

relationship between di↵erent system representations, the development of the signal structure

and its associated dynamical structure function has created many new avenues for future

research.

9.2.1 Definitions of System Representations

Although we extended the definition of the dynamical structure function, there is still other

representations of systems (linear and nonlinear) that require more attention.
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Definition of the Structured Linear Fractional Transformation

The definition of the structured linear fractional transformation should be extended to

N =

264J H

L K

375 and S(s) =

266666664

S1(s) 0 ... 0

0
. . . . . .

...

...
. . . . . . 0

0 ... 0 S
q

(s)

377777775
(9.1)

in order to model the class of all interconnected proper transfer functions. Moreover, removing

some of the restrictions imposed in Section 5.2.3, including cases where L are not diagonal,

such as the system given in Figure 9.1 will be an important step.

G1(s)

G2(s)

Figure 9.1: A subsystem structure with a single input a↵ecting multiple subsystems, the
associated structured linear fractional transformation will have L be a non-diagonal matrix.

Definitions of Nonlinear System Representations

This thesis detailed relationships of representations of linear systems, so a natural extension

would be to determine the definitions and relationships between the corresponding nonlinear

system representations associated with each of the four graphical structures outlined in this

work.
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9.2.2 Network Semantics

In preparation for further developments in the area of network semantics and since the state

space model does not uniquely define a structured linear fractional transformation we need a

representation of higher structural informativity than a state space model. One potential

representation is the generalized state space equations [70] which take the form

ẋ = Ax+ Âw +Bu

w = Āx+ Ãw + B̄u

y = Cx+ C̄w +Du

(9.2)

where w 2 Rl is known as the auxiliary variables and l is known as the intricacy. In order to

determine the semantics of system representations in terms of the generalized state space

equations, a framework will be needed for describing the semantics of the representation, a

nontrivial task.

Semantics of the Dynamical Structure Function

Two areas of the current network semantics results that demand more reflection are:

1. The necessary conditions on a transformation that maintains the intermediate W and V

representation of a dynamical structure function. Even though the conditions are based

on the state space representation rather than the generalized state space equations, the

results are likely to inform the new semantics of the generalized equations.

2. Given the necessary conditions for maintaining W and V , in order to show necessary

conditions for maintaining the dynamical structure function, we need to determine

conditions for the case when (W (s), V (s)) 6= (Ŵ (s), V̂ (s)). If

(Q(s), P (s)) = (Q̂(s), P̂ (s)) (9.3)
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((sI �D
W

(s))�1(W (s)�D
W

(s)), (sI �D
W

(s))�1V (s)) = (9.4)

((sI � D̂
Ŵ

(s))�1(Ŵ (s)� D̂
Ŵ

(s)), (sI � D̂
Ŵ

(s))�1V̂ (s))

Equation 9.4 can be rewritten as the set of equations:

Ŵ (s) = (sI � D̂
Ŵ

(s))(sI �D
W

(s))�1(W (s)�D
W

(s)) + D̂
Ŵ

(s)

V̂ (s) = (sI � D̂
Ŵ

(s))(sI �D
W

(s))�1V (s)
(9.5)

This means that the dynamical structure function is maintained by any transformation

that meets the criteria in (9.5), but has (W (s), V (s)) 6= (Ŵ (s), V̂ (s)). One of the issues

for determining the conditions on the transformation is that it is possible to maintain

Q(s) and P (s) with W (s) 6= Ŵ (s) when no transformation exists due to the orders of

the associated realizations being di↵erent; This idea is demonstrated in Example 19.

Example 19. Consider a state space model with:

A11 =

264�1 2

2 �1

375 , A12 =

2641
2

375

A21 =


2 2

�
, A22 = [�1]

(9.6)

which means that

A =

266664
�1 2 1

2 �1 2

2 2 �1

377775 and C =

2641 0 0
0 1 0

375 (9.7)
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which means the system is 3rd order. One of the corresponding intermediate matrices is given

by

W (s) =

264�s+1
s+1

2s+4
s+1

2s+6
s+1

�s+3
s+1

375 (9.8)

which means the associated Q(s) matrix of the dynamical structure function is then

Q(s) =

264 0 2s2+6s+4
s

3+3s2+s�1

2s2+8s+6
s

3+3s2�s�3 0

375 (9.9)

Now, we want to find a state space model with the same dynamical structure function,

i.e. Q(s) = Q̂(s), but a di↵erent intermediate matrix Ŵ (s) 6= W (s). So we define:

D̂
Ŵ

(s) =

264 1
s+1 0

0 1
s+2

375 . (9.10)

Now, given (9.5) and (9.10) we can get

Ŵ (s) =

264 1
s+1

2s4+8s3+8s2�2s�4
s

4+4s3+4s2�1

2s4+12s3+20s2+4s�6
s

4+5s3+5s2�5s�6
1

s+2

375 (9.11)
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whose associated dynamical structure function is Q̂(s) = Q(s). Since Ŵ (s) = Â11 + Â12(sI �

Â22)�1Â21 we can determine the associated realization:

Â11 =

2640 2
2 0

375 Â12 =

264�1.2982 0.2316 0 0.1486 0.0074

0 0 2.2857 �0.05 1

375

Â21 =

266666666664

�0.1213 0.2662

3.638 3.6509

0.5833 0

�0.0333 �3.4053

0.665 0.8297

377777777775
Â22 =

266666666664

0.4126 0.0471 0 0 0

0.0471 �0.9984 0 0 0

0 0 1 0 0

0 0 0 �2.4132 �0.0207

0 0 0 �0.0207 �2.001

377777777775

(9.12)

which means that

Â =

2666666666666666664

0 2 �1.2982 0.2316 0 0.1486 0.0074

2 0 0 0 2.2857 �0.05 1

�0.1213 0.2662 0.4126 0.0471 0 0 0

3.638 3.6509 0.0471 �0.9984 0 0 0

0.5833 0 0 0 1 0 0

�0.0333 �3.4053 0 0 0 �2.4132 �0.0207

0.665 0.8297 0 0 0 �0.0207 �2.001

3777777777777777775

(9.13)

which is 7th order.

Therefore:

1. In some cases, no transformation exists that can maintain the dynamical structure

function when W (s) 6= W̄ (s) because the order of the original system is not preserved,

and
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2. One possible way of finding a necessary condition for the set of transformations that

maintains the dynamical structure function is to determine the properties of the set

of D̂
Ŵ

(s) matrices from (9.5) that do not change the order of the associated state

space model. Then, given two di↵erent state space models of the same order, we can

determine the properties of T that relate the two and gain insight into a general set

of properties for necessary conditions on transformations that maintain the dynamical

structure function.

9.2.3 Applications

Finally, there is plenty of room for expansion of the structural applications discussed in this

thesis. The passive reconstruction algorithm requires an extension for robust reconstruction

in the presence of noise. While the polynomial-time robust reconstruction algorithm may

contain some ideas that can be applied, the curve fitting algorithm struggles with noisy

data and will require more careful thought. In terms of the vulnerability application, the

problem of feedback vulnerability is still an open problem. Feedback vulnerability refers to a

methodology for reducing the overall vulnerability of a dynamical structure function in cases

when feedback is inherent in the system.
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